我試圖使用dask
和fbprophet
庫,我要麼做錯了什麼或有意想不到的性能問題。Dask和fbprophet
import dask.dataframe as dd
import datetime as dt
import multiprocessing as mp
import numpy as np
import pandas as pd
pd.options.mode.chained_assignment = None
from fbprophet import Prophet
import time
ncpu = mp.cpu_count()
def parallel_pd(fun, vec, pool = ncpu-1):
with mp.Pool(pool) as p:
res = p.map(fun,vec)
return(res)
def forecast1dd(ts):
time.sleep(0.1)
return ts["y"].max()
def forecast1mp(key):
ts = df[df["key"]==key]
time.sleep(0.1)
return ts["y"].max()
def forecast2dd(ts):
future = pd.DataFrame({"ds":pd.date_range(start=ts["ds"].max()+ dt.timedelta(days=1),
periods=7, freq="D")})
key = ts.name
model = Prophet(yearly_seasonality=True)
model.fit(ts)
forecast = model.predict(future)
future["yhat"] = forecast["yhat"]
future["key"] = key
return future.as_matrix()
def forecast2mp(key):
ts = df[df["key"]==key]
future = pd.DataFrame({"ds":pd.date_range(start=ts["ds"].max()+ dt.timedelta(days=1),
periods=7, freq="D")})
model = Prophet(yearly_seasonality=True)
model.fit(ts)
forecast = model.predict(future)
future["yhat"] = forecast["yhat"]
future["key"] = key
return future.as_matrix()
在一個側我有運行在約0.1秒,從而forecast1dd
和forecast1mp
在模擬我的功能和用於下面的數據幀的自定義函數
N = 2*365
key_n = 5000
df = pd.concat([pd.DataFrame({"ds":pd.date_range(start="2015-01-01",periods=N, freq="D"),
"y":np.random.normal(100,20,N),
"key":np.repeat(str(k),N)}) for k in range(key_n)])
keys = df.key.unique()
df = df.sample(frac=1).reset_index(drop=True)
ddf = dd.from_pandas(df, npartitions=ncpu*2)
我得到(分別)
%%time
grp = ddf.groupby("key").apply(forecast1dd, meta=pd.Series(name="s"))
df1dd = grp.to_frame().compute()
CPU times: user 7.7 s, sys: 400 ms, total: 8.1 s
Wall time: 1min 8s
%%time
res = parallel_pd(forecast1mp,keys)
CPU times: user 820 ms, sys: 360 ms, total: 1.18 s
Wall time: 10min 36s
在第一種情況下,核心沒有在100%使用,但性能符合我的實際情況。使用線剖析器很容易檢查到,第二種情況下性能低下的罪魁禍首是ts = df[df["key"]==key]
,如果我們擁有更多密鑰,情況會變得更糟。
所以到現在爲止我很滿意dask
。但每當我嘗試使用fbprophet
事情都會改變。在這裏,我使用較少的keys
,但不太可能以前的案例dask
的表現總是比multiprocessing
差。
N = 2*365
key_n = 200
df = pd.concat([pd.DataFrame({"ds":pd.date_range(start="2015-01-01",periods=N, freq="D"),
"y":np.random.normal(100,20,N),
"key":np.repeat(str(k),N)}) for k in range(key_n)])
keys = df.key.unique()
df = df.sample(frac=1).reset_index(drop=True)
ddf = dd.from_pandas(df, npartitions=ncpu*2)
%%time
grp = ddf.groupby("key").apply(forecast2dd,
meta=pd.Series(name="s")).to_frame().compute()
df2dd = pd.concat([pd.DataFrame(a) for a in grp.s.values])
CPU times: user 3min 42s, sys: 15 s, total: 3min 57s
Wall time: 3min 30s
%%time
res = parallel_pd(forecast2mp,keys)
df2mp = pd.concat([pd.DataFrame(a) for a in res])
CPU times: user 76 ms, sys: 160 ms, total: 236 ms
Wall time: 39.4 s
現在我的問題是:
- 我怎樣才能改善與DASK先知的表現?
- 我應該怎麼做才能使用100%的內核?
嗨湯姆,我試過你的方法,以及'從dask.distributed導入客戶端',然後'client = Client()'和性能幾乎相同。問題是,每當我在'forecast2dd'中使用'key_n = 5000'時,出現以下錯誤:'OSError:[Errno 24]太多打開的文件:'/ dev/null'' – user32185
我解決了'OSError:[Errno 24 ]太多打開的文件'從終端觸發'ulimit -Sn 10000'。 – user32185