我有兩個datetimeindexed數據框。其中一個缺少一些日期時間(df1
),而另一個完成時(本系列中沒有任何缺口的常規時間戳),並且滿足NaN
的(df2
)。填寫datetimeindex差距由NaN
我試圖從DF1值匹配的df2
指數,與NaN
的地方這樣的datetimeindex
不存在df1
填充。
實施例:
In [51]: df1
Out [51]: value
2015-01-01 14:00:00 20
2015-01-01 15:00:00 29
2015-01-01 16:00:00 41
2015-01-01 17:00:00 43
2015-01-01 18:00:00 26
2015-01-01 19:00:00 20
2015-01-01 20:00:00 31
2015-01-01 21:00:00 35
2015-01-01 22:00:00 39
2015-01-01 23:00:00 17
2015-03-01 00:00:00 6
2015-03-01 01:00:00 37
2015-03-01 02:00:00 56
2015-03-01 03:00:00 12
2015-03-01 04:00:00 41
2015-03-01 05:00:00 31
... ...
2018-12-25 23:00:00 41
<34843 rows × 1 columns>
In [52]: df2 = pd.DataFrame(data=None, index=pd.date_range(freq='60Min', start=df1.index.min(), end=df1.index.max()))
df2['value']=np.NaN
df2
Out [52]: value
2015-01-01 14:00:00 NaN
2015-01-01 15:00:00 NaN
2015-01-01 16:00:00 NaN
2015-01-01 17:00:00 NaN
2015-01-01 18:00:00 NaN
2015-01-01 19:00:00 NaN
2015-01-01 20:00:00 NaN
2015-01-01 21:00:00 NaN
2015-01-01 22:00:00 NaN
2015-01-01 23:00:00 NaN
2015-01-02 00:00:00 NaN
2015-01-02 01:00:00 NaN
2015-01-02 02:00:00 NaN
2015-01-02 03:00:00 NaN
2015-01-02 04:00:00 NaN
2015-01-02 05:00:00 NaN
... ...
2018-12-25 23:00:00 NaN
<34906 rows × 1 columns>
使用df2.combine_first(df1)
返回相同的數據df1.reindex(index= df2.index)
,填補代替的NaN其中不應該有一些值數據的任何間隙。
In [53]: Result = df2.combine_first(df1)
Result
Out [53]: value
2015-01-01 14:00:00 20
2015-01-01 15:00:00 29
2015-01-01 16:00:00 41
2015-01-01 17:00:00 43
2015-01-01 18:00:00 26
2015-01-01 19:00:00 20
2015-01-01 20:00:00 31
2015-01-01 21:00:00 35
2015-01-01 22:00:00 39
2015-01-01 23:00:00 17
2015-01-02 00:00:00 35
2015-01-02 01:00:00 53
2015-01-02 02:00:00 28
2015-01-02 03:00:00 48
2015-01-02 04:00:00 42
2015-01-02 05:00:00 51
... ...
2018-12-25 23:00:00 41
<34906 rows × 1 columns>
這是我希望得到:
Out [53]: value
2015-01-01 14:00:00 20
2015-01-01 15:00:00 29
2015-01-01 16:00:00 41
2015-01-01 17:00:00 43
2015-01-01 18:00:00 26
2015-01-01 19:00:00 20
2015-01-01 20:00:00 31
2015-01-01 21:00:00 35
2015-01-01 22:00:00 39
2015-01-01 23:00:00 17
2015-01-02 00:00:00 NaN
2015-01-02 01:00:00 NaN
2015-01-02 02:00:00 NaN
2015-01-02 03:00:00 NaN
2015-01-02 04:00:00 NaN
2015-01-02 05:00:00 NaN
... ...
2018-12-25 23:00:00 41
<34906 rows × 1 columns>
可能有人能夠解釋爲什麼發生這種情況的一些光,以及如何設置這些值是如何填補?
您可以[接受](http://stackoverflow.com/tour)的答案。謝謝。 – jezrael
謝謝你的建議@jezrael,我試過你的方法,但仍然有同樣的問題使用'asfreq'或'resample'。填入的空白使系列經常包含不應該在那裏的數據。索引中還有其他漏洞可能會產生一些影響。如果有幫助,我使用熊貓版本0.14.1和Python 2.7.10 – tg359x
我添加了我的測試數據,仍然是同樣的問題?如果是的話,它可以是你的版本0.14.1 - 我使用0.17.1,它運行良好。 – jezrael