嗨我想創建一個有效的RSA程序,但在一個非常小的級別上,我遇到了使用此代碼進行加密和解密的問題,有人可以幫我弄清楚什麼是錯誤的?我嘗試過很多不同的方式,但這種方式似乎是正確的數學方法,所以我相信這可能只是我缺乏編碼技能?由於簡單的RSA代碼
import random, math
def RandomPrime():
prime = False
while prime == False:
n = 2
while n % 2 == 0:
n = random.randint(10000, 100000)
s = math.trunc(n**0.5)
s = int(s)
x = 3
# While n doesn't exactly divide to equal 0, and x is less then the sqrt of n
while (n % x != 0) and (x <= s):
x = x + 2
# if n is greater than s, it means it has run out of numbers to test, so is prime
if x > s:
prime = True
return n
def Modulus(p, q):
M = p * q
return M
def Totient(p, q):
T = ((p-1) * (q-1))
return T
def Pubkey(T):
prime = False
while prime == False:
n = 2
while n % 2 == 0:
n = random.randint(3, T)
s = math.trunc(n**0.5)
s = int(s)
x = 3
# While
while (n % x != 0) and (x <= s):
x = x + 2
if x > s:
prime = True
return n
def privkey(T, n):
y = math.fmod(1, T)
d = float((y/n))
return d
# z is my encyption in this scenario
z = 8
# I generate p and q, using my random prime generator, i used low primes in
# this example just to see if it would work but it is still not showing reults
p = RandomPrime()
q = RandomPrime()
print(p, q)
#This creates the modulus
M = Modulus(p, q)
print(M)
# Eulier's totient
T = Totient(p, q)
print(T)
#Pub key creation
n = Pubkey(T)
print(n)
#Priv key creation
d = privkey(n, T)
print(d)
enc = (pow(z, n)) % M
print('enc: ', enc)
dec = (pow(enc, d)) % M
print('dec: ', dec)
你錯過了告訴我們您所使用的編程語言。編輯您的問題並至少將其添加爲標籤。 – Robert
其蟒蛇,對不起夥伴 – user3181295
你的錯誤是什麼?你能計算(pow(z,n))嗎?它應該是一個任意n的巨大數字。 – alko