2015-03-19 83 views
1

我想在eclipse中使用Scala語言中的Spark MLlib算法。編譯期間沒有問題,運行時出現錯誤,說「NoSuchMethodError」。在Scala中運行時錯誤:NoSuchMethodError

這裏是我的代碼#Copied

import org.apache.spark.SparkConf 
import org.apache.spark.SparkContext 
import org.apache.spark.mllib.linalg.Vectors 
import org.apache.spark.mllib.regression.LabeledPoint 
import org.apache.spark.mllib.regression.LinearRegressionWithSGD 
import org.apache.spark.rdd.RDD 
import org.apache.spark.mllib._ 


object LinearRegression { 
    def truncate(k: Array[String], n: Int): List[String] = { 
     var trunced = k.take(n - 1) ++ k.drop(n) 
     // println(trunced.length) 
     return trunced.toList 
     } 
    } 
    def main(args: Array[String]): Unit = { 

    val sc = new SparkContext(new SparkConf().setAppName("linear  regression").setMaster("local")) 

//Loading Data 
    val data = sc.textFile("D://Innominds//DataSets//Regression//Regression Dataset.csv") 
    println("Total no of instances :" + data.count()) 

//Split the data into training and testing 
    val split = data.randomSplit(Array(0.8, 0.2)) 
    val train = split(0).cache() 
    println("Training instances :" + train.count()) 
    val test = split(1).cache() 
    println("Testing instances :" + test.count()) 
    //Mapping the data 
    val trainingRDD = train.map { 
     line => 
     val parts = line.split(',') 
     //println(parts.length) 
     LabeledPoint(parts(5).toDouble, Vectors.dense(truncate(parts, 5).map(x => x.toDouble).toArray)) 
    } 
    val testingRDD = test.map { 
     line => 
    val parts = line.split(',') 
    LabeledPoint(parts(5).toDouble, Vectors.dense(truncate(parts, 5).map(x => x.toDouble).toArray)) 
} 

val model = LinearRegressionWithSGD.train(trainingRDD, 20) 

val predict = testingRDD.map { x => 
    val score = model.predict(x.features) 
    (score, x.label) 
} 

val loss = predict.map { 
    case (p, l) => 
    val err = p - l 
    err * err 
}.reduce(_ + _) 

val rmse = math.sqrt(loss/test.count()) 

println("Test RMSE = " + rmse) 

sc.stop() 

}

,而發展模式即

Var model = LInearRegressionWithSGD(trainingRDD,20). 

該行之前的打印語句在控制檯上完美打印值出現誤差。

依賴於pom.xml的是:

<dependencies> 
    <dependency> 
     <groupId>org.scala-lang</groupId> 
     <artifactId>scala-library</artifactId> 
     <version>${scala.version}</version> 
    </dependency> 
    <dependency> 
     <groupId>junit</groupId> 
     <artifactId>junit</artifactId> 
     <version>4.4</version> 
     <scope>test</scope> 
    </dependency> 
    <dependency> 
     <groupId>org.specs</groupId> 
     <artifactId>specs</artifactId> 
     <version>1.2.5</version> 
     <scope>test</scope> 
    </dependency> 

    <dependency> 
     <groupId>org.apache.spark</groupId> 
     <artifactId>spark-core_2.11</artifactId> 
     <version>1.2.1</version> 
    </dependency> 
    <dependency> 
     <groupId>org.apache.spark</groupId> 
     <artifactId>spark-mllib_2.11</artifactId> 
     <version>1.3.0</version> 
    </dependency> 
    <dependency> 
     <groupId>com.google.guava</groupId> 
     <artifactId>guava</artifactId> 
     <version>14.0.1</version> 
    </dependency> 
</dependencies> 

錯誤在日食:

15/03/19 15:11:32 INFO SparkContext: Created broadcast 6 from broadcast at  GradientDescent.scala:185 
    Exception in thread "main" java.lang.NoSuchMethodError:  org.apache.spark.rdd.RDD.treeAggregate$default$4(Ljava/lang/Object;)I 
     at   org.apache.spark.mllib.optimization.GradientDescent$$anonfun$runMiniBatchSGD$1.a pply$mcVI$sp(GradientDescent.scala:189) 
     at scala.collection.immutable.Range.foreach$mVc$sp(Range.scala:166) 
     at  org.apache.spark.mllib.optimization.GradientDescent$.runMiniBatchSGD(GradientDes cent.scala:184) 
     at  org.apache.spark.mllib.optimization.GradientDescent.optimize(GradientDescent.sca la:107) 
     at org.apache.spark.mllib.regression.GeneralizedLinearAlgorithm.run(GeneralizedLine arAlgorithm.scala:263) 
     at 
    org.apache.spark.mllib.regression.GeneralizedLinearAlgorithm.run(GeneralizedLine arAlgorithm.scala:190) 
     at  org.apache.spark.mllib.regression.LinearRegressionWithSGD$.train(LinearRegressio n.scala:150) 
     at  org.apache.spark.mllib.regression.LinearRegressionWithSGD$.train(LinearRegressio n.scala:184) 
     at Algorithms.LinearRegression$.main(LinearRegression.scala:46) 
     at Algorithms.LinearRegression.main(LinearRegression.scala) 
+3

請將NoSuchMethodError的完整堆棧跟蹤添加到您的問題 – 2015-03-19 10:44:35

+0

編輯問題@SergeyPauk – 2015-03-19 11:38:25

+1

火星核心和火花mlib之間的版本不匹配。 – monkjack 2015-03-19 11:43:07

回答

1

您使用spark-core 1.2.1和1.3.0 spark-mllib。確保你對這兩個依賴使用相同的版本。