在羣集上運行sparkJob超過特定數據大小(〜2,5gb)時,我得到「因爲關閉了SparkContext而導致作業被取消」或「執行程序丟失」。看着紗I,我看到那個被殺的工作是成功的。運行500MB數據時沒有問題。我正在尋找解決方案,發現: - 「似乎紗線殺死了一些執行者,因爲他們要求的內存超出預期。」在大型數據集上運行spark時,「sparkContext已關閉」
如何調試它的任何建議?
命令我提交我的火花的工作有:
/opt/spark-1.5.0-bin-hadoop2.4/bin/spark-submit --driver-memory 22g --driver-cores 4 --num-executors 15 --executor-memory 6g --executor-cores 6 --class sparkTesting.Runner --master yarn-client myJar.jar jarArguments
和sparkContext設置
val sparkConf = (new SparkConf()
.set("spark.driver.maxResultSize", "21g")
.set("spark.akka.frameSize", "2011")
.set("spark.eventLog.enabled", "true")
.set("spark.eventLog.enabled", "true")
.set("spark.eventLog.dir", configVar.sparkLogDir)
)
簡化代碼失敗看起來像
val hc = new org.apache.spark.sql.hive.HiveContext(sc)
val broadcastParser = sc.broadcast(new Parser())
val featuresRdd = hc.sql("select "+ configVar.columnName + " from " + configVar.Table +" ORDER BY RAND() LIMIT " + configVar.Articles)
val myRdd : org.apache.spark.rdd.RDD[String] = featuresRdd.map(doSomething(_,broadcastParser))
val allWords= featuresRdd
.flatMap(line => line.split(" "))
.count
val wordQuantiles= featuresRdd
.flatMap(line => line.split(" "))
.map(word => (word, 1))
.reduceByKey(_ + _)
.map(pair => (pair._2 , pair._2))
.reduceByKey(_+_)
.sortBy(_._1)
.collect
.scanLeft((0,0.0)) ((res,add) => (add._1, res._2+add._2))
.map(entry => (entry._1,entry._2/allWords))
val dictionary = featuresRdd
.flatMap(line => line.split(" "))
.map(word => (word, 1))
.reduceByKey(_ + _) // here I have Rdd of word,count tuples
.filter(_._2 >= moreThan)
.filter(_._2 <= lessThan)
.filter(_._1.trim!=(""))
.map(_._1)
.zipWithIndex
.collect
.toMap
和錯誤堆棧
Exception in thread "main" org.apache.spark.SparkException: Job cancelled because SparkContext was shut down
at org.apache.spark.scheduler.DAGScheduler$$anonfun$cleanUpAfterSchedulerStop$1.apply(DAGScheduler.scala:703)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$cleanUpAfterSchedulerStop$1.apply(DAGScheduler.scala:702)
at scala.collection.mutable.HashSet.foreach(HashSet.scala:79)
at org.apache.spark.scheduler.DAGScheduler.cleanUpAfterSchedulerStop(DAGScheduler.scala:702)
at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onStop(DAGScheduler.scala:1511)
at org.apache.spark.util.EventLoop.stop(EventLoop.scala:84)
at org.apache.spark.scheduler.DAGScheduler.stop(DAGScheduler.scala:1435)
at org.apache.spark.SparkContext$$anonfun$stop$7.apply$mcV$sp(SparkContext.scala:1715)
at org.apache.spark.util.Utils$.tryLogNonFatalError(Utils.scala:1185)
at org.apache.spark.SparkContext.stop(SparkContext.scala:1714)
at org.apache.spark.scheduler.cluster.YarnClientSchedulerBackend$MonitorThread.run(YarnClientSchedulerBackend.scala:146)
at org.apache.spark.scheduler.DAGScheduler.runJob(DAGScheduler.scala:567)
at org.apache.spark.SparkContext.runJob(SparkContext.scala:1813)
at org.apache.spark.SparkContext.runJob(SparkContext.scala:1826)
at org.apache.spark.SparkContext.runJob(SparkContext.scala:1839)
at org.apache.spark.SparkContext.runJob(SparkContext.scala:1910)
at org.apache.spark.rdd.RDD.count(RDD.scala:1121)
at sparkTesting.InputGenerationAndDictionaryComputations$.createDictionary(InputGenerationAndDictionaryComputations.scala:50)
at sparkTesting.Runner$.main(Runner.scala:133)
at sparkTesting.Runner.main(Runner.scala)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
at java.lang.reflect.Method.invoke(Method.java:483)
at org.apache.spark.deploy.SparkSubmit$.org$apache$spark$deploy$SparkSubmit$$runMain(SparkSubmit.scala:672)
at org.apache.spark.deploy.SparkSubmit$.doRunMain$1(SparkSubmit.scala:180)
at org.apache.spark.deploy.SparkSubmit$.submit(SparkSubmit.scala:205)
at org.apache.spark.deploy.SparkSubmit$.main(SparkSubmit.scala:120)
at org.apache.spark.deploy.SparkSubmit.main(SparkSubmit.scala)
根據我的經驗,這幾乎總是由於OOM例外。嘗試查看各個執行器機器上的日誌文件。 –
我會從您的作業中打印堆棧並使用一些Java util工具監視JVM堆大小:jstat,jstatd,jconsole ...以瞭解有關此限制的更多信息。如果你還有物理內存,你可以在啓動你的應用之前增加JVM的內存大小!您可以根據您的優化堆大小調整您的集合。 –