我想使用從negvalues
到的過濾器來過濾出fitted.values.plot
中的行。我試過是這樣的:根據矢量從一個文件中過濾行
fitted.values.plot.filter <- fitted.values.plot[!fitted.values.plot$miRNAs_2,
%in% negvalues,]
negvalues:
> negvalues
[1] hsa-mir-135b hsa-mir-9-2 hsa-mir-9-3 hsa-mir-9-1 hsa-mir-139 hsa-mir-3152 hsa-mir-129-2 hsa-mir-129-1
[9] hsa-mir-584 hsa-mir-195 hsa-mir-378a hsa-mir-30a hsa-mir-497 hsa-mir-183 hsa-mir-182 hsa-mir-378g
[17] hsa-mir-21 hsa-mir-31 hsa-mir-378i hsa-mir-138-2 hsa-mir-138-1 hsa-mir-4662a hsa-mir-378c hsa-mir-504
[25] hsa-mir-19a hsa-mir-10b hsa-mir-422a hsa-mir-218-1 hsa-mir-218-2 hsa-mir-7-1 hsa-mir-25 hsa-mir-204
[33] hsa-mir-145 hsa-mir-7-3 hsa-mir-1224 hsa-mir-503 hsa-mir-26a-2 hsa-mir-26a-1 hsa-mir-7-2 hsa-mir-92a-1
[41] hsa-mir-3195 hsa-mir-642a hsa-mir-149 hsa-mir-125a hsa-mir-99a hsa-mir-224 hsa-let-7c hsa-mir-29b-1
[49] hsa-mir-215 hsa-mir-135a-1 hsa-mir-4532 hsa-mir-3687 hsa-mir-378d-2 hsa-mir-135a-2
54 Levels: hsa-let-7c hsa-mir-10b hsa-mir-1224 hsa-mir-125a hsa-mir-129-1 hsa-mir-129-2 hsa-mir-135a-1 ... hsa-mir-99a
>
fitted.values.plot:
> head(fitted.values.plot)
100 106 122 124 126 134
1 0.689673028877691 2.05061067282612 1.05656799134149 1.75048593733063 0.310608256464213 1.19301227491032
2 0.689964636197034 2.05147771134477 1.05701472906612 1.75122607720905 0.310739587743298 1.19351670396128
3 0.689420828637648 2.04986080371093 1.05618162462874 1.74984581809282 0.310494672963684 1.1925760131319
4 0.819027066280732 2.43522013059115 1.25473629682568 2.0788044504954 0.36886547451107 1.4167718652805
5 1.71613593527086 5.10260154817646 2.62909265996488 4.35579136120192 0.772896674787318 2.96861142957053
6 0.581521608151111 1.72904313525816 0.890881753699624 1.47598261016372 0.261900067482724 1.00592945874486
141 167 185 192 235 239 243
1 0.867775250152935 1.78201822975849 4.56767147668584 0.88919230295437 1.20614688357531 2.44091589518612 0.453229695574674
2 0.868142162593898 1.78277170211024 4.56960277801154 0.889568270946429 1.20665686619711 2.44194796242832 0.453421330002931
3 0.867457921335906 1.78136657976424 4.56600116656115 0.888867142330624 1.20570581872163 2.44002329891381 0.453063958140798
4 1.0305338726677 2.11625089232931 5.42437707818155 1.05596787572402 1.43236998141843 2.89873041421608 0.538236776522783
5 2.15931351259239 4.43425419487975 11.3658862003178 2.21260626495642 3.00129470553158 6.07381078758356 1.1277862623877
6 0.731694640580416 1.50257015039446 3.85138979111705 0.749753167542404 1.01700435718728 2.05814244909665 0.382156254335941
246 26 261 267 270 279
1 9.29220635550229 0.917975598997362 1.23335634006278 0.799542483070391 0.280114334869145 14.3542483667977
2 9.29613528308486 0.918363737133027 1.23387782737788 0.799880545355599 0.280232772718505 14.36031762529
3 9.288808373306 0.917639912872592 1.23290532523112 0.799250105671664 0.280011902412698 14.3489992926246
4 11.0350386225875 1.09014972354014 1.46468280269592 0.949503470277195 0.332652158783696 17.0465096303023
5 23.1221007302257 2.28422868109658 3.06900088527496 1.98952768851301 0.697017653185172 35.7181452871246
6 7.83504437155823 0.774022796630335 1.03994694915621 0.674161828971106 0.23618806544365 12.1032797348103
299 301 305 342 35 350 356
1 0.753129142741628 1.50036484935157 1.4909962305725 2.28269735314694 5.34698835531872 0.755981268961232 1.08750267953744
2 0.753447580553803 1.50099923311524 1.4916266530999 2.28366252247813 5.34924916714631 0.756300912708466 1.08796249705657
3 0.752853737814032 1.4998161946133 1.49045100175897 2.28186261437029 5.34503306391212 0.755704821065611 1.08710500060068
4 0.8943849135495 1.78177102693844 1.77064524409288 2.71083664007729 6.3498614600319 0.897771980278944 1.29147304867556
5 1.87403585705227 3.73340688438915 3.7100946441283 5.68011041907495 13.3050858563655 1.88113289592788 2.70606845550359
6 0.635026819803686 1.26508438560826 1.25718491146553 1.92473502680601 4.50849770391938 0.637431688424655 0.916965403304764
361 366 367 377 379 388 400
1 0.211085453506283 0.847222381841847 1.30506524028464 1.83280982013158 2.96187312094598 1.86849492946425 0.927319872035087
2 0.211174704587117 0.847580604125905 1.30561704753294 1.83358476816657 2.9631254591481 1.86928496586523 0.927711961113149
3 0.211008263591912 0.846912568815787 1.30458800287924 1.83213959662387 2.96079002057696 1.86781165659436 0.926980768888328
4 0.250676324114233 1.00612613924672 1.54984131653617 2.1765688771035 3.51739759475841 2.21894703194334 1.10124659439366
5 0.525250831926215 2.10817113873598 3.24743648503989 4.56064056900063 7.37012567656856 4.64943699269074 2.30748034105363
6 0.177983982612795 0.714364780585988 1.1004107823492 1.54539683213722 2.49740550712112 1.57548596321423 0.781901742821317
402 46 48 55 57 60
1 0.917217782115268 0.278406628969608 1.12156870821005 0.389984318352341 1.11390669355888 1.7197525593975
2 0.917605599831052 0.278524344767328 1.12204292951603 0.390149211391357 1.1143776752144 1.72047970459932
3 0.916882373109646 0.278304820988556 1.12115857197796 0.389841708543656 1.11349935917905 1.71912367876836
4 1.08924977166189 0.330624158130626 1.33192845051861 0.463129191343587 1.32282935990787 2.04230676635884
5 2.28234298058451 0.692768312789999 2.79083606787808 0.970410723478138 2.77177042643805 4.27931649256865
6 0.773383817181369 0.23474815429827 0.94568935066465 0.328828732553183 0.939228858670536 1.45006870225191
68 70 73 77 82 93
1 0.717084627119229 0.958871302874981 0.874149314497608 0.740455373756385 2.48365414652581 0.999934406893559
2 0.71738782460137 0.959276732518475 0.874518922018322 0.740768452849802 2.48470428434115 1.00035719882496
3 0.716822402981821 0.95852066197323 0.873829654807118 0.740184603383782 2.48274592169214 0.999568749999806
4 0.851579942716058 1.13871576421144 1.03810344694697 0.879334071489469 2.94948458778392 1.1874806023427
5 1.78434511094657 2.38599079746756 2.17517430519642 1.84249930352591 6.18015777501619 2.48816946107968
6 0.604634642913903 0.808505420264441 0.737069152839075 0.624340494236301 2.09417868019165 0.843129193102739
94 miRNAs_1 miRNAs_2
1 1.35335856597949 hsa-let-7a-5p hsa-let-7a-1
2 1.35393079259561 hsa-let-7a-5p hsa-let-7a-2
3 1.35286366862826 hsa-let-7a-5p hsa-let-7a-3
4 1.60719246586146 hsa-let-7b-5p hsa-let-7b
5 3.36760634552223 hsa-let-7c-5p hsa-let-7c
6 1.14113096603789 hsa-let-7d-5p hsa-let-7d
> str(fitted.values.plot)
'data.frame': 1369 obs. of 48 variables:
$ 100 : Factor w/ 1171 levels "0.00208423487317347",..: 677 678 675 768 972 573 693 620 622 735 ...
$ 106 : Factor w/ 1171 levels "0.00619707324579727",..: 752 753 750 846 1078 597 769 645 647 813 ...
$ 122 : Factor w/ 1171 levels "0.00319301431435754",..: 678 679 676 772 1000 573 695 620 622 739 ...
$ 124 : Factor w/ 1171 levels "0.0052900775915819",..: 697 698 695 823 1052 590 714 638 640 758 ...
$ 126 : Factor w/ 1171 levels "0.00093867750790807",..: 677 678 675 768 954 573 693 620 622 735 ...
$ 134 : Factor w/ 1171 levels "0.00360535744240779",..: 681 682 679 775 1005 574 698 622 624 742 ...
$ 141 : Factor w/ 1171 levels "0.00262247088506391",..: 677 678 675 768 997 573 693 620 622 735 ...
$ 167 : Factor w/ 1171 levels "0.00538537014436763",..: 698 699 696 827 1056 591 715 639 641 759 ...
$ 185 : Factor w/ 1171 levels "0.0138037878563998",..: 862 863 860 961 279 744 879 803 805 928 ...
$ 192 : Factor w/ 1171 levels "0.00268719455332448",..: 677 678 675 768 997 573 693 620 622 735 ...
$ 235 : Factor w/ 1171 levels "0.00364505104833233",..: 681 682 679 775 1015 574 698 622 624 742 ...
$ 239 : Factor w/ 1171 levels "0.00737659995129747",..: 766 767 764 860 1100 659 783 707 709 827 ...
$ 243 : Factor w/ 1171 levels "0.00136968838496083",..: 677 678 675 768 957 573 693 620 622 735 ...
$ 246 : Factor w/ 1171 levels "0.0280816266896476",..: 1127 1128 1125 149 445 1007 1144 1062 1064 114 ...
$ 26 : Factor w/ 1171 levels "0.00277417946771979",..: 677 678 675 769 998 573 693 620 622 736 ...
$ 261 : Factor w/ 1171 levels "0.00372727972151037",..: 683 684 681 777 1018 576 700 624 626 744 ...
$ 267 : Factor w/ 1171 levels "0.00241626721072567",..: 677 678 675 768 977 573 693 620 622 735 ...
$ 270 : Factor w/ 1171 levels "0.000846522976489484",..: 677 678 675 768 954 573 693 620 622 735 ...
$ 279 : Factor w/ 1171 levels "0.0433794331104381",..: 305 306 303 398 699 193 321 244 246 363 ...
$ 299 : Factor w/ 1171 levels "0.00227600320380762",..: 677 678 675 768 973 573 693 620 622 735 ...
$ 301 : Factor w/ 1171 levels "0.00453419607635083",..: 690 691 688 784 1027 583 707 631 633 751 ...
$ 305 : Factor w/ 1171 levels "0.00450588352655514",..: 690 691 688 784 1027 583 707 631 633 751 ...
$ 342 : Factor w/ 1171 levels "0.0068984536571944",..: 759 760 757 853 1088 603 776 700 702 820 ...
$ 35 : Factor w/ 1171 levels "0.0161589320300708",..: 902 903 900 1000 264 785 919 833 835 963 ...
$ 350 : Factor w/ 1171 levels "0.00228462250698566",..: 677 678 675 768 973 573 693 620 622 735 ...
$ 356 : Factor w/ 1171 levels "0.00328650086991218",..: 679 680 677 773 1001 573 696 620 622 740 ...
$ 361 : Factor w/ 1171 levels "0.000637913395182892",..: 677 678 675 768 954 573 693 620 622 735 ...
$ 366 : Factor w/ 1171 levels "0.00256035883618851",..: 677 678 675 768 997 573 693 620 622 735 ...
$ 367 : Factor w/ 1171 levels "0.00394398848682563",..: 685 686 683 779 1021 578 702 626 628 746 ...
$ 377 : Factor w/ 1171 levels "0.00553886549576888",..: 699 700 697 828 1057 592 716 640 642 795 ...
$ 379 : Factor w/ 1171 levels "0.00895096515320675",..: 785 786 783 895 1126 678 818 726 728 862 ...
$ 388 : Factor w/ 1171 levels "0.00564670812004142",..: 699 700 697 831 1059 592 716 640 642 798 ...
$ 400 : Factor w/ 1171 levels "0.00280241844316787",..: 677 678 675 770 998 573 693 620 622 737 ...
$ 402 : Factor w/ 1171 levels "0.00277188929787553",..: 677 678 675 769 998 573 693 620 622 736 ...
$ 46 : Factor w/ 1171 levels "0.000841362182838137",..: 677 678 675 768 954 573 693 620 622 735 ...
$ 48 : Factor w/ 1171 levels "0.00338945053153015",..: 679 680 677 773 1000 573 696 620 622 740 ...
$ 55 : Factor w/ 1171 levels "0.00117855691359054",..: 677 678 675 768 954 573 693 620 622 735 ...
$ 57 : Factor w/ 1171 levels "0.00336629544576333",..: 679 680 677 773 1000 573 696 620 622 740 ...
$ 60 : Factor w/ 1171 levels "0.00519719940818688",..: 697 698 695 821 1050 590 714 638 640 758 ...
$ 68 : Factor w/ 1171 levels "0.00216707443132959",..: 677 678 675 768 973 573 693 620 622 735 ...
$ 70 : Factor w/ 1171 levels "0.00289776883342749",..: 677 678 675 770 998 573 693 620 622 737 ...
$ 73 : Factor w/ 1171 levels "0.00264173370474041",..: 677 678 675 768 997 573 693 620 622 735 ...
$ 77 : Factor w/ 1171 levels "0.00223770228411448",..: 677 678 675 768 973 573 693 620 622 735 ...
$ 82 : Factor w/ 1171 levels "0.00750575761026171",..: 765 766 763 859 1101 658 782 706 708 826 ...
$ 93 : Factor w/ 1171 levels "0.00302186409279344",..: 677 678 675 771 998 573 694 620 622 738 ...
$ 94 : Factor w/ 1171 levels "0.00408993392667926",..: 687 688 685 781 1026 580 704 628 630 748 ...
$ miRNAs_1: Factor w/ 1208 levels "Cal01","Cal02",..: 11 11 11 12 13 14 15 16 16 17 ...
$ miRNAs_2: Factor w/ 1230 levels "hsa-let-7a-1",..: 1 2 3 4 5 6 7 8 9 10 ...
應該安裝' .values.plot [!fitted.values.plot $ miRNAs_2%in%negvalues],如果您正在獲取錯誤。我的意思是省略','。 – user227710
問題是我得到太多比賽。它似乎沒有過濾正確 – BioMan
在這種情況下,請提供僅有一些列和預期輸出的樣本數據。這樣,我們可以重現您的錯誤。 – user227710