2017-04-26 77 views
1

我有以下功能:InvalidArgumentError上SOFTMAX在tensorflow

def forward_propagation(self, x): 
       # The total number of time steps 
       T = len(x) 
       # During forward propagation we save all hidden states in s because need them later. 
       # We add one additional element for the initial hidden, which we set to 0 
       s = tf.zeros([T+1, self.hidden_dim]) 
       # The outputs at each time step. Again, we save them for later. 
       o = tf.zeros([T, self.word_dim]) 


       a = tf.placeholder(tf.float32) 
       b = tf.placeholder(tf.float32) 
       c = tf.placeholder(tf.float32) 

       s_t = tf.nn.tanh(a + tf.reduce_sum(tf.multiply(b, c))) 
       o_t = tf.nn.softmax(tf.reduce_sum(tf.multiply(a, b))) 
       # For each time step... 
       with tf.Session() as sess: 
         s = sess.run(s) 
         o = sess.run(o) 
         for t in range(T): 
           # Note that we are indexing U by x[t]. This is the same as multiplying U with a one-hot vector. 
           s[t] = sess.run(s_t, feed_dict={a: self.U[:, x[t]], b: self.W, c: s[t-1]}) 
           o[t] = sess.run(o_t, feed_dict={a: self.V, b: s[t]}) 
       return [o, s] 

self.U,self.V,和self.W是numpy的陣列。我試圖讓SOFTMAX上

o_t = tf.nn.softmax(tf.reduce_sum(tf.multiply(a, b))) 

圖,它給我的錯誤在這條線:

o[t] = sess.run(o_t, feed_dict={a: self.V, b: s[t]}) 

的錯誤是:

InvalidArgumentError (see above for traceback): Expected begin[0] == 0 (got -1) and size[0] == 0 (got 1) when input.dim_size(0) == 0
[[Node: Slice = Slice[Index=DT_INT32, T=DT_INT32, _device="/job:localhost/replica:0/task:0/cpu:0"](Shape_1, Slice/begin, Slice/size)]]

如何,我應該得到SOFTMAX在tensorflow?

回答

2

問題出現是因爲您在tf.nn.softmax的參數上致電tf.reduce_sum。結果,softmax函數失敗,因爲標量不是有效的輸入參數。您的意思是使用tf.matmul而不是tf.reduce_sumtf.multiply的組合嗎?

編輯:開箱即用的Tensorflow不提供等效的np.dot。如果要計算矩陣和向量的點積,則需要明確地總和索引:

# equivalent to np.dot(a, b) if a.ndim == 2 and b.ndim == 1 
c = tf.reduce_sum(a * b, axis=1) 
+0

我正在嘗試製作a和b的點生成。 – yusuf

+1

在這種情況下,您應該使用'tf.matmul'(如果兩個參數都是矩陣),或者您必須指定要求和的軸。例如,如果'a'具有形狀'(n,k)'而'b'具有形狀'(k,)',則可以使用'tf.reduce_sum(a * b,axis = 1)'計算點積。 –

+0

tm matmul給了我這個錯誤:形狀必須是等級2,但是'MatMul'(op:'MatMul')的等級爲1,輸入形狀爲[8000,100],[100]。我已經使用了o [t] .assign(tf.nn.softmax(tf.matmul(self.V,s [t]))) – yusuf

相關問題