我無法弄清楚爲什麼當我繪製它們時,我的價值觀不合理。防爆。 x軸0顯示值爲0.2,x軸0.2顯示值爲0.6,x軸0.6顯示1.2和x軸的值1.2顯示值爲0.陰謀破壞
R版本2.15.2(2012-10-26) - 「搗蛋」在Mac OS X上運行10.6.8
方法秒殺ELISA試劑盒魚譜濃CONC2
1 Mekebri CNTRL AbraxisRBT abraxis rbt 450 0.0900000 0.09
2 Mekebri CNTRL AbraxisRBT abraxis rbt 450 0.0700000 0.09
3 Mekebri CNTRL AbraxisRBT abraxis rbt 450 0.0700000 0.08
4 Mekebri CNTRL EnviroRBT enviro rbt 450 0.0900000 0.09
5 Mekebri CNTRL EnviroRBT enviro rbt 450 0.0700000 0.09
6 Mekebri CNTRL EnviroRBT enviro rbt 450 0.0700000 0.08
7 Mekebri 0.2 AbraxisRBT abraxis rbt 450 0.1100000 0.12
8 Mekebri 0.2 AbraxisRBT abraxis rbt 450 0.3000000 0.32
9 Mekebri 0.2 AbraxisRBT abraxis rbt 450 0.1000000 0.10
10 Mekebri 0.2 EnviroRBT enviro rbt 450 0.1100000 0.12
11 Mekebri 0.2 EnviroRBT enviro rbt 450 0.3000000 0.32
12 Mekebri 0.2 EnviroRBT enviro rbt 450 0.1000000 0.10
13 Mekebri 0.6 AbraxisRBT abraxis rbt 450 0.1600000 0.16
14 Mekebri 0.6 AbraxisRBT abraxis rbt 450 0.1800000 0.18
15 Mekebri 0.6 AbraxisRBT abraxis rbt 450 0.1700000 0.17
16 Mekebri 0.6 EnviroRBT enviro rbt 450 0.1600000 0.16
17 Mekebri 0.6 EnviroRBT enviro rbt 450 0.1800000 0.18
18 Mekebri 0.6 EnviroRBT enviro rbt 450 0.1700000 0.17
19 Mekebri 1.2 AbraxisRBT abraxis rbt 450 0.9680557 0.963486175
20 Mekebri 1.2 AbraxisRBT abraxis rbt 450 0.6040148 0.622156567
21 Mekebri 1.2 AbraxisRBT abraxis rbt 450 0.5665602 0.5849501
22 Mekebri 1.2 EnviroRBT enviro rbt 450 0.9680557 0.963486175
23 Mekebri 1.2 EnviroRBT enviro rbt 450 0.6040148 0.622156567
24 Mekebri 1.2 EnviroRBT enviro rbt 450 0.5665602 0.5849501
plot(c(0,0.2,0.6,1.2),
with(mc, tapply(conc2, list(kit,spike), mean,na.rm=T))[1,],
type="b",lwd=2,
ylim=c(0,1),
xlab=expression(paste("Spike, ",mu,"g/L")),
ylab=expression(paste(mu,"g/L")),
col="blue")
points(c(0,0.2,0.6,1.2),
with(mc, tapply(conc2, list(kit,spike), mean,na.rm=T))[2,],
type="b",lwd=2,
ylim=c(0,1),
col="red")
legend(0.2,0.8,lty=1,lwd=2,
col=c("blue","red"),legend=c("Abraxis","EnviroLogix"))
dput(head(mc))
structure(list(method = structure(c(3L, 3L, 3L, 3L, 3L, 3L), .Label = c("Geis",
"Mag", "Mekebri"), class = "factor"), spike = structure(c(4L,
4L, 4L, 4L, 4L, 4L), .Label = c("0.2", "0.6", "1.2", "CNTRL"), class = "factor"),
elisa = structure(c(2L, 2L, 2L, 2L, 2L, 1L), .Label = c("AbraxisBlank",
"AbraxisRBT", "EnviroBlank", "EnviroRBT"), class = "factor"),
kit = structure(c(1L, 1L, 1L, 1L, 1L, 1L), .Label = c("Abraxis",
"Enviro"), class = "factor"), fish = structure(c(2L, 2L,
2L, 2L, 2L, 1L), .Label = c("blank", "rbt"), class = "factor"),
spectral = structure(c(1L, 1L, 1L, 1L, 1L, 1L), .Label = c("450",
"600", "scan"), class = "factor"), conc = structure(c(1L,
1L, 1L, 8L, 1L, 2L), .Label = c("> DL", ">DL", "0", "0.01",
"0.02", "0.03", "0.04", "0.05", "0.06", "0.07", "0.08", "0.09",
"0.1", "0.11", "0.12", "0.13", "0.14", "0.15", "0.16", "0.17",
"0.18", "0.19", "0.2", "0.21", "0.22", "0.23", "0.24", "0.25",
"0.26", "0.27", "0.28", "0.29", "0.294871066", "0.3", "0.308253804",
"0.31", "0.32", "0.33", "0.34", "0.344304772", "0.35", "0.350277282",
"0.353189188", "0.359024076", "0.36", "0.360435916", "0.37",
"0.370993533", "0.37858631", "0.378888547", "0.38", "0.384568909",
"0.39", "0.4", "0.401289641", "0.41", "0.42", "0.43", "0.44",
"0.45", "0.46", "0.47", "0.473548535", "0.48", "0.489942496",
"0.49", "0.5", "0.51", "0.52", "0.53", "0.54", "0.55", "0.56",
"0.566560247", "0.57", "0.58", "0.5849501", "0.6", "0.604014755",
"0.61", "0.62", "0.622156567", "0.64", "0.65", "0.66", "0.67",
"0.69", "0.7", "0.71", "0.73", "0.75", "0.77", "0.78", "0.79",
"0.8", "0.81", "0.82", "0.83", "0.84", "0.85", "0.87", "0.88",
"0.9", "0.91", "0.92", "0.963486175", "0.968055663", "0.97",
"0.98", "1", "1.01", "1.02", "1.03", "1.04", "1.1", "1.11",
"1.2"), class = "factor"), conc2 = c(0, 0, 0, 0.05, 0, 0)), .Names = c("method",
"spike", "elisa", "kit", "fish", "spectral", "conc", "conc2"), row.names = c(NA,
6L), class = "data.frame")
請重複此操作。看到這裏:http://stackoverflow.com/questions/5963269/how-to-make-a-great-r-reproducible-example – 2013-03-10 23:13:59
當這種情況發生在我身上時,通常是因爲其中一列出乎意料地是類的因素'。你可以把你的問題粘貼到'dput(head(mc))'的結果中,這樣我們就可以檢查了嗎? – Ben 2013-03-10 23:16:25
希望我現在增加了足夠的信息... – Ellen 2013-03-10 23:55:37