2014-03-13 89 views
5

解決set of Boolean equations,我與Constraint-Programming SolverMiniZinc嘗試使用以下輸入:轉換布爾FlatZinc到CNF DIMACS

% Solve system of Brent's equations modulo 2 

% Matrix dimensions 
int: aRows = 3; 
int: aCols = 3; 
int: bCols = 3; 
int: noOfProducts = 23; 

% Dependent parameters 
int: bRows = aCols; 
int: cRows = aRows; 
int: cCols = bCols; 
set of int: products = 1..noOfProducts; 

% Corefficients are stored in arrays 
array[1..aRows, 1..aCols, products] of var bool: A; 
array[1..bRows, 1..bCols, products] of var bool: B; 
array[1..cRows, 1..cCols, products] of var bool: C; 

constraint 
    forall(rowA in 1..aRows, colA in 1..aCols) (
     forall(rowB in 1..bRows, colB in 1..bCols) (
      forall (rowC in 1..cRows, colC in 1..cCols) (
       xorall (k in products) (
        A[rowA, colA, k] /\ B[rowB, colB, k] /\ C[rowC, colC, k] 
       ) == ((rowA == rowC) /\ (colB == colC) /\ (colA == rowB)) 
      ) 
     ) 
    ); 

solve satisfy; 

% Output solution as table of variable value assignments 
output 
["\nSolution for <" ++ show(aRows) ++ ", " ++ show(aCols) ++ 
       ", " ++ show(bCols) ++ "> " ++ show(noOfProducts) ++ " products:"] ++ 
["\nF" ++ show(100*rowA+10*colA+k) ++ " = " ++ 
show(bool2int(A[rowA, colA, k])) | 
rowA in 1..aRows, colA in 1..aCols, k in products] ++ 

["\nG" ++ show(100*rowB+10*colB+k) ++ " = " ++ 
show(bool2int(B[rowB, colB, k])) | 
rowB in 1..bRows, colB in 1..bCols, k in products] ++ 

["\nD" ++ show(100*rowC+10*colC+k) ++ " = " ++ 
show(bool2int(C[rowC, colC, k])) | 
rowC in 1..cRows, colC in 1..cCols, k in products]; 

MiniZinc沒有找到小參數(rows=cols=2, products=7)一個解決方案,但沒有走到盡頭略有增加。 我想喂生成的FlatZinc模型到SAT solverCryptominisat,LingelingClasp。我希望這些工具可能會勝過現有的MiniZinc後端。

我的問題:
是否有任何可用的工具,以一個純粹的布爾FlatZinc模型轉換爲CNF (DIMACS)
我能做些什麼來取代xorall()謂詞,因爲一些MiniZinc後端似乎不支持它?

回答

4

我不知道任何將FlatZinc文件轉換爲CNF(DIMACS)文件的工具。 (MiniZinc發行版有一個將flatzinc轉換爲XCSP格式的程序,也許有一個用於XCSP到CNF的工具?)

但是,有一些基於SAT /啓發的求解器可能更好, minicsp,fzn2smt。有問題的是,他們 - 如你所說 - 不支持相當新的xorall()函數。

此外,它可能是使用標記的搜索,也就是像這樣一個好主意(注意bool_search)

solve :: bool_search(
     [A[i,j,k] | i in 1..aRows, j in 1..aCols, k in products], 
     first_fail, 
     indomain_min, 
     complete) 
    satisfy; 

另外,我建議你測試轉換到基於0..1模型,而這些解算器可以和其他人一樣進行測試。

這裏是我轉換後的模型,其中我剛剛將var bool更改爲var 0..1,並用sum()和bool2int()替換了xorall()[我希望我將其轉換爲正確的。] Update:I've改爲Axel建議的版本。

% Solve system of Brent's equations modulo 2 

% Matrix dimensions 
int: aRows = 3; 
int: aCols = 3; 
int: bCols = 3; 
int: noOfProducts = 23; 

% Dependent parameters 
int: bRows = aCols; 
int: cRows = aRows; 
int: cCols = bCols; 
set of int: products = 1..noOfProducts; 

% Corefficients are stored in arrays 
array[1..aRows, 1..aCols, products] of var 0..1: A; % hakank: change to 0..1 
array[1..bRows, 1..bCols, products] of var 0..1: B; 
array[1..cRows, 1..cCols, products] of var 0..1: C; 

constraint 
    forall(rowA in 1..aRows, colA in 1..aCols) (
     forall(rowB in 1..bRows, colB in 1..bCols) (
      forall (rowC in 1..cRows, colC in 1..cCols) (
       % hakank: changed 
       sum (k in products) (
        bool2int(A[rowA, colA, k]=1/\ B[rowB, colB, k]=1 /\ C[rowC, colC, k]=1) 
       ) == 
        %% bool2int(rowA == rowC)+ bool2int(colB == colC) + bool2int(colA == rowB) 
        bool2int((rowA == rowC)/\(colB == colC)/\(colA == rowB)) 
      ) 
     ) 
    ); 


    solve :: int_search(
     [A[i,j,k] | i in 1..aRows, j in 1..aCols, k in products] ++ 
     [B[i,j,k] | i in 1..aRows, j in 1..aCols, k in products] ++ 
     [C[i,j,k] | i in 1..aRows, j in 1..aCols, k in products] 
     , 
     first_fail, 
     indomain_min, 
     complete) 
    satisfy; 

    % Output solution as table of variable value assignments 
    output 
    ["\nSolution for <" ++ show(aRows) ++ ", " ++ show(aCols) ++ 
      ", " ++ show(bCols) ++ "> " ++ show(noOfProducts) ++ " products:"] ++ 
    ["\nF" ++ show(100*rowA+10*colA+k) ++ " = " ++ 
     show(A[rowA, colA, k]) | 
     rowA in 1..aRows, colA in 1..aCols, k in products] ++ 

    ["\nG" ++ show(100*rowB+10*colB+k) ++ " = " ++ 
     show(B[rowB, colB, k]) | 
     rowB in 1..bRows, colB in 1..bCols, k in products] ++ 

    ["\nD" ++ show(100*rowC+10*colC+k) ++ " = " ++ 
     show(C[rowC, colC, k]) | 
     rowC in 1..cRows, colC in 1..cCols, k in products]; 

這裏是模型:http://www.hakank.org/minizinc/akemper1_2.mzn。 (更新:這些時間是針對較早的,錯誤的,模型的)模型中的問題實例由3s中的minicsp(包括展平),5s中的Opturion CPX解算器,fzn2smt在6s。和模型也許可以進一步與標號L等扭捏

鏈接所提到的求解:

另請參閱我的MiniZinc頁面以獲取FlatZinc求解器的更長列表:http://www.hakank.org/minizinc/

+0

非常感謝這些真正深刻的提示。我擔心你的解決方案時間短是由於建模錯誤造成的。'((rowA == rowC)/ \(colB == colC)/ \(colA == rowB))''應該可能轉化爲'bool2int((rowA == rowC)/ \(colB == colC)/ \ colA == rowB))' –

+0

感謝糾正,阿克塞爾。它在答案中改變了。我會看看是否有一些FlatZinc求解器更快。 – hakank

+0

經過測試的新版本和MiniCSP仍然相當快:3s。 – hakank