2016-09-17 56 views
0

我試圖通過一個ps和兩個工人分發TensorBox ReInspect實現(https://github.com/Russell91/TensorBox)。我已將培訓代碼添加到sv.managed_session中。CancelledError:運行分佈式張量流時的RunManyGraphs

def train(H, test_images, server): 
''' 
Setup computation graph, run 2 prefetch data threads, and then run the main loop 
''' 

if not os.path.exists(H['save_dir']): os.makedirs(H['save_dir']) 

ckpt_file = H['save_dir'] + '/save.ckpt' 
with open(H['save_dir'] + '/hypes.json', 'w') as f: 
    json.dump(H, f, indent=4) 

x_in = tf.placeholder(tf.float32) 
confs_in = tf.placeholder(tf.float32) 
boxes_in = tf.placeholder(tf.float32) 
q = {} 
enqueue_op = {} 
for phase in ['train', 'test']: 
    dtypes = [tf.float32, tf.float32, tf.float32] 
    grid_size = H['grid_width'] * H['grid_height'] 
    shapes = (
     [H['image_height'], H['image_width'], 3], 
     [grid_size, H['rnn_len'], H['num_classes']], 
     [grid_size, H['rnn_len'], 4], 
     ) 
    q[phase] = tf.FIFOQueue(capacity=30, dtypes=dtypes, shapes=shapes) 
    enqueue_op[phase] = q[phase].enqueue((x_in, confs_in, boxes_in)) 

def make_feed(d): 
    return {x_in: d['image'], confs_in: d['confs'], boxes_in: d['boxes'], 
      learning_rate: H['solver']['learning_rate']} 

def thread_loop(sess, enqueue_op, phase, gen): 
    for d in gen: 
     sess.run(enqueue_op[phase], feed_dict=make_feed(d)) 

(config, loss, accuracy, summary_op, train_op, 
smooth_op, global_step, learning_rate, encoder_net) = build(H, q) 

saver = tf.train.Saver(max_to_keep=None) 
writer = tf.train.SummaryWriter(
    logdir=H['save_dir'], 
    flush_secs=10 
) 

init_op = tf.initialize_all_variables() 


#Assigning the first worker as supervisor 
sv = tf.train.Supervisor(is_chief=(FLAGS.task_index == 0), 
         #logdir="/tmp/train_logs", 
         init_op=init_op, 
         summary_op=summary_op, 
         saver=saver, 
         global_step=global_step, 
         save_model_secs=600) 

#Starting training in managed session distributed across the cluster 
# with tf.Session(config=config) as sess: 
with sv.managed_session(server.target) as sess: 
    tf.train.start_queue_runners(sess=sess) 
    for phase in ['train', 'test']: 
     # enqueue once manually to avoid thread start delay 
     gen = train_utils.load_data_gen(H, phase, jitter=H['solver']['use_jitter']) 
     d = gen.next() 
     sess.run(enqueue_op[phase], feed_dict=make_feed(d)) 
     t = tf.train.threading.Thread(target=thread_loop, 
             args=(sess, enqueue_op, phase, gen)) 
     t.daemon = True 
     t.start() 

    tf.set_random_seed(H['solver']['rnd_seed']) 
    # sess.run(tf.initialize_all_variables()) 
    writer.add_graph(sess.graph) 
    weights_str = H['solver']['weights'] 
    if len(weights_str) > 0: 
     print('Restoring from: %s' % weights_str) 
     saver.restore(sess, weights_str) 

    # train model for N iterations 
    start = time.time() 
    max_iter = H['solver'].get('max_iter', FLAGS.iter) 
    for i in xrange(max_iter): 
     display_iter = H['logging']['display_iter'] 
     adjusted_lr = (H['solver']['learning_rate'] * 
         0.5 ** max(0, (i/H['solver']['learning_rate_step']) - 2)) 
     lr_feed = {learning_rate: adjusted_lr} 

     if i % display_iter != 0: 
      # train network 
      batch_loss_train, _ = sess.run([loss['train'], train_op], feed_dict=lr_feed) 
     else: 
      # test network every N iterations; log additional info 
      if i > 0: 
       dt = (time.time() - start)/(H['batch_size'] * display_iter) 
      start = time.time() 
      (train_loss, test_accuracy, summary_str, 
       _, _) = sess.run([loss['train'], accuracy['test'], 
            summary_op, train_op, smooth_op, 
           ], feed_dict=lr_feed) 
      writer.add_summary(summary_str, global_step=global_step.eval(session=sess)) 
      print_str = string.join([ 
       'Step: %d', 
       'lr: %f', 
       'Train Loss: %.2f', 
       'Test Accuracy: %.1f%%', 
       'Time/image (ms): %.1f' 
      ], ', ') 
      print(print_str % 
        (i, adjusted_lr, train_loss, 
        test_accuracy * 100, dt * 1000 if i > 0 else 0)) 

     if global_step.eval(session=sess) % H['logging']['save_iter'] == 0 or global_step.eval(session=sess) == max_iter - 1: 
      saver.save(sess, ckpt_file, global_step=global_step) 
sv.stop() 

的訓練開始,但打印的最後迭代之前,我得到了主管以下錯誤(工人:1):

W tensorflow/core/kernels/queue_base.cc:294] _0_fifo_queue: Skipping cancelled enqueue attempt with queue not closed 
W tensorflow/core/kernels/queue_base.cc:294] _1_fifo_queue_1: Skipping cancelled enqueue attempt with queue not closed 
Exception in thread Thread-2: 
Traceback (most recent call last): 
    File "/usr/lib/python2.7/threading.py", line 810, in __bootstrap_inner 
    self.run() 
    File "/usr/lib/python2.7/threading.py", line 763, in run 
    self.__target(*self.__args, **self.__kwargs) 
    File "distributed-train.py", line 461, in thread_loop 
    sess.run(enqueue_op[phase], feed_dict=make_feed(d)) 
    File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/client/session.py", line 717, in run 
    run_metadata_ptr) 
    File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/client/session.py", line 915, in _run 
    feed_dict_string, options, run_metadata) 
    File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/client/session.py", line 965, in _do_run 
    target_list, options, run_metadata) 
    File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/client/session.py", line 985, in _do_call 
    raise type(e)(node_def, op, message) 
CancelledError: RunManyGraphs 

*** Error in `python': corrupted double-linked list: 0x00007f9a702b8eb0 *** 
Aborted (core dumped) 

這又如何解決?

回答

2

CancelledError是相對良性的:我懷疑你的主線程退出with sv.managed_session() as sess:塊,它會關閉會話並取消所有掛起的請求,包括由你的兩個預取線程所做的請求。

爲避免看到此錯誤,我建議您使用tf.train.Coordinator and tf.train.QueueRunner類來管理用於預取的線程。這些可以確保您在訓練結束時乾淨地關閉線程。 (特別是,有一個實驗性的FeedingQueueRunner,這對您的應用程序來說似乎很理想。)

核心轉儲的原因不太清楚,它可能會暴露會話關閉或分佈式會話代碼中的錯誤。對於這個錯誤,你可以試着做一個最小的例子來重現錯誤(不依賴於任何輸入數據等)並提交一個GitHub issue

相關問題