-4
我試圖將SVM應用於我的數據以預測未來的數據。 所以我面臨以下錯誤:所有參數必須使用svm的相同長度
All arguments must be the same length
> svmmodele1<-svm(data$note ~ AppCache+TCP+DNS,data=data,scale = FALSE,kernel="linear",cost= 0.08,gamma=0.06)
> svm.video.pred1<-predict(svmmodele1,data)
> svm.video.pred1
1 3 4 5 6 7 10 11 12 13 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54
3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
Levels: 1 2 3 4 5
> svm.video.table1<-table(pred=svm.video.pred1, true= data$note)
Error in table(pred = svm.video.pred1, true = data$note) :
All arguments must be the same length
data$note
[1] 2 2 2 3 3 3 2 2 2 1 1 1 1 1 1 3 3 3 3 3 3 3 3 3 4 4 4 3 3 3 4 4 4 4 4 4 5 5
[39] 5 5 5 5 5 5 5 3 3 3 1 1 1 1 1 1
Levels: 1 2 3 4 5
顯示數據$ note。 –
該錯誤與'svm'無關。它由'table'返回並且非常自我解釋。 – Roland
@Roland它可能與'svm.predict'有關,最近有人問過同樣的事情。 http://stackoverflow.com/questions/38546899/my-rows-are-mismatched-in-my-svm-scripting-code-for-kaggle。不匹配的長度可能已在「表格」中顯示,但是較早產生。 –