[假設你需要這個,因爲它的一些奇怪的第三方系統,需要正則表達式]
新方法
我越去想弗雷德裏克評論,我越是同意。即使輸入字符串很長,正則表達式引擎也應該能夠將其編譯爲緊湊的DFA。許多情況下,下面是一個明智的解決辦法:
import re
def regexp(lo, hi):
fmt = '%%0%dd' % len(str(hi))
return re.compile('(%s)' % '|'.join(fmt % i for i in range(lo, hi+1)))
(它工作正常,在下文的測試中所有的數值範圍,包括99519000 - 99519099.粗糙背的最粗略計算表明,9這個數字大約是1GB內存的限制,這就是說,如果大多數數字的大小都匹配,如果只有少數匹配,則可以大得多)。
老方法
[再次更新給予更短的結果 - 從合併偶爾\d\d
這是關於好,因爲產生的手分開]
假設所有的數字都是一樣的長度(即你零墊左側如果必要的話),這個工程:
import re
def alt(*args):
'''format regexp alternatives'''
if len(args) == 1: return args[0]
else: return '(%s)' % '|'.join(args)
def replace(s, c):
'''replace all characters in a string with a different character'''
return ''.join(map(lambda x: c, s))
def repeat(s, n):
'''format a regexp repeat'''
if n == 0: return ''
elif n == 1: return s
else: return '%s{%d}' % (s, n)
def digits(lo, hi):
'''format a regexp digit range'''
if lo == 0 and hi == 9: return r'\d'
elif lo == hi: return str(lo)
else: return '[%d-%d]' % (lo, hi)
def trace(f):
'''for debugging'''
def wrapped(lo, hi):
result = f(lo, hi)
print(lo, hi, result)
return result
return wrapped
#@trace # uncomment to get calls traced to stdout (explains recursion when bug hunting)
def regexp(lo, hi):
'''generate a regexp that matches integers from lo to hi only.
assumes that inputs are zero-padded to the length of hi (like phone numbers).
you probably want to surround with^and $ before using.'''
assert lo <= hi
assert lo >= 0
slo, shi = str(lo), str(hi)
# zero-pad to same length
while len(slo) < len(shi): slo = '0' + slo
# first digits and length
l, h, n = int(slo[0]), int(shi[0]), len(slo)
if l == h:
# extract common prefix
common = ''
while slo and slo[0] == shi[0]:
common += slo[0]
slo, shi = slo[1:], shi[1:]
if slo: return common + regexp(int(slo), int(shi))
else: return common
else:
# the core of the routine.
# split into 'complete blocks' like 200-599 and 'edge cases' like 123-199
# and handle each separately.
# are these complete blocks?
xlo = slo[1:] == replace(slo[1:], '0')
xhi = shi[1:] == replace(shi[1:], '9')
# edges of possible complete blocks
mlo = int(slo[0] + replace(slo[1:], '9'))
mhi = int(shi[0] + replace(shi[1:], '0'))
if xlo:
if xhi:
# complete block on both sides
# this is where single digits are finally handled, too.
return digits(l, h) + repeat('\d', n-1)
else:
# complete block to mhi, plus extra on hi side
prefix = '' if l or h-1 else '0'
return alt(prefix + regexp(lo, mhi-1), regexp(mhi, hi))
else:
prefix = '' if l else '0'
if xhi:
# complete block on hi side plus extra on lo
return alt(prefix + regexp(lo, mlo), regexp(mlo+1, hi))
else:
# neither side complete, so add extra on both sides
# (and maybe a complete block in the middle, if room)
if mlo + 1 == mhi:
return alt(prefix + regexp(lo, mlo), regexp(mhi, hi))
else:
return alt(prefix + regexp(lo, mlo), regexp(mlo+1, mhi-1), regexp(mhi, hi))
# test a bunch of different ranges
for (lo, hi) in [(0, 0), (0, 1), (0, 2), (0, 9), (0, 10), (0, 11), (0, 101),
(1, 1), (1, 2), (1, 9), (1, 10), (1, 11), (1, 101),
(0, 123), (111, 123), (123, 222), (123, 333), (123, 444),
(0, 321), (111, 321), (222, 321), (321, 333), (321, 444),
(123, 321), (111, 121), (121, 222), (1234, 4321), (0, 999),
(99519000, 99519099)]:
fmt = '%%0%dd' % len(str(hi))
rx = regexp(lo, hi)
print('%4s - %-4s %s' % (fmt % lo, fmt % hi, rx))
m = re.compile('^%s$' % rx)
for i in range(0, 1+int(replace(str(hi), '9'))):
if m.match(fmt % i):
assert lo <= i <= hi, i
else:
assert i < lo or i > hi, i
功能regexp(lo, hi)
建立該0123893887620之間的匹配值的正則表達式和hi
(零填充到最大長度)。您可能需要在之前放置一個^
,然後在$
之後(如在測試代碼中)強制匹配成爲整個字符串。
該算法實際上很簡單 - 它遞歸地將事物分成普通前綴和「完整塊」。一個完整的塊是類似於200-599並且可以可靠匹配(在這種情況下與[2-5]\d{2}
)。
因此123-599分爲123-199和200-599。後半部分是一個完整的塊,前半部分具有共同的前綴1和23-99,它被遞歸地處理爲23-29(通用前綴)和30-99(完整塊)(並且我們最終終止,因爲參數到每個呼叫都比初始輸入短)。
唯一討厭的細節是prefix
,這是必須的,因爲參數regexp()
是整數,稱爲所以當產生,比方說,對於00-09的正則表達式,它實際上產生了0-9的正則表達式,而不領先0
輸出是一串的測試用例,示出了範圍和正則表達式:
0 - 0 0
0 - 1 [0-1]
0 - 2 [0-2]
0 - 9 \d
00 - 10 (0\d|10)
00 - 11 (0\d|1[0-1])
000 - 101 (0\d\d|10[0-1])
1 - 1 1
1 - 2 [1-2]
1 - 9 [1-9]
01 - 10 (0[1-9]|10)
01 - 11 (0[1-9]|1[0-1])
001 - 101 (0(0[1-9]|[1-9]\d)|10[0-1])
000 - 123 (0\d\d|1([0-1]\d|2[0-3]))
111 - 123 1(1[1-9]|2[0-3])
123 - 222 (1(2[3-9]|[3-9]\d)|2([0-1]\d|2[0-2]))
123 - 333 (1(2[3-9]|[3-9]\d)|2\d\d|3([0-2]\d|3[0-3]))
123 - 444 (1(2[3-9]|[3-9]\d)|[2-3]\d{2}|4([0-3]\d|4[0-4]))
000 - 321 ([0-2]\d{2}|3([0-1]\d|2[0-1]))
111 - 321 (1(1[1-9]|[2-9]\d)|2\d\d|3([0-1]\d|2[0-1]))
222 - 321 (2(2[2-9]|[3-9]\d)|3([0-1]\d|2[0-1]))
321 - 333 3(2[1-9]|3[0-3])
321 - 444 (3(2[1-9]|[3-9]\d)|4([0-3]\d|4[0-4]))
123 - 321 (1(2[3-9]|[3-9]\d)|2\d\d|3([0-1]\d|2[0-1]))
111 - 121 1(1[1-9]|2[0-1])
121 - 222 (1(2[1-9]|[3-9]\d)|2([0-1]\d|2[0-2]))
1234 - 4321 (1(2(3[4-9]|[4-9]\d)|[3-9]\d{2})|[2-3]\d{3}|4([0-2]\d{2}|3([0-1]\d|2[0-1])))
000 - 999 \d\d{2}
99519000 - 99519099 995190\d\d
它需要一段時間來運行作爲最後的測試遍歷99999999號。
表達式應該足夠緊湊,以避免任何緩衝區限制(我猜想內存大小最壞的情況是成正比的最大數字的位數的平方)。
ps我使用python 3,但我不認爲它在這裏有很大的不同。
爲什麼不匹配正確的數字位數('\ d {8}'),然後對於在int中轉換的所有匹配項,檢查它是否在範圍內? – Scharron
addint to @rnbcoder寫道你不能把str轉換爲int並比較? 'int(start_number)<= test_number <=(end_number)' –
是否有任何理由必須用正則表達式來完成?我只是將該數字轉換爲一個int,並檢查它是否在start_number和end_number之間。這可能效率稍低,但複雜性的順序是相同的,因爲檢查正則表達式匹配是O(n),並且將字符串轉換爲int是O(n),那麼兩個int比較是O(1)。 –