嗨我想知道在圖形屏幕上羣集數據時,是否有辦法在滾動時顯示數據點屬於哪些行?在羣集kmeans數據上顯示行
從上面的圖片中,我希望會有其中,如果我選擇的方式或捲動,我可以告訴它屬於哪一行的點。
下面是代碼:
%% dimensionality reduction
columns = 6
[U,S,V]=svds(fulldata,columns);
%% randomly select dataset
rows = 1000;
columns = 6;
%# pick random rows
indX = randperm(size(fulldata,1));
indX = indX(1:rows);
%# pick random columns
indY = randperm(size(fulldata,2));
indY = indY(1:columns);
%# filter data
data = U(indX,indY);
%% apply normalization method to every cell
data = data./repmat(sqrt(sum(data.^2)),size(data,1),1);
%% generate sample data
K = 6;
numObservarations = 1000;
dimensions = 6;
%% cluster
opts = statset('MaxIter', 100, 'Display', 'iter');
[clustIDX, clusters, interClustSum, Dist] = kmeans(data, K, 'options',opts, ...
'distance','sqEuclidean', 'EmptyAction','singleton', 'replicates',3);
%% plot data+clusters
figure, hold on
scatter3(data(:,1),data(:,2),data(:,3), 5, clustIDX, 'filled')
scatter3(clusters(:,1),clusters(:,2),clusters(:,3), 100, (1:K)', 'filled')
hold off, xlabel('x'), ylabel('y'), zlabel('z')
%% plot clusters quality
figure
[silh,h] = silhouette(data, clustIDX);
avrgScore = mean(silh);
%% Assign data to clusters
% calculate distance (squared) of all instances to each cluster centroid
D = zeros(numObservarations, K); % init distances
for k=1:K
%d = sum((x-y).^2).^0.5
D(:,k) = sum(((data - repmat(clusters(k,:),numObservarations,1)).^2), 2);
end
% find for all instances the cluster closet to it
[minDists, clusterIndices] = min(D, [], 2);
% compare it with what you expect it to be
sum(clusterIndices == clustIDX)
或者可能是簇的數據的輸出方法,歸一化和重新組織到那裏原始格式上與排它屬於從原來的端柱appedicies 「fulldata」。
什麼是錯的在右上角的聚類中心?而這兩個深藍色的組合對我來說看起來不太明智。 – 2012-07-08 18:17:59
對我來說,有3個不同的羣集,我沒有遇到過程序可以明智地選擇正確數量的羣集,所以它的試驗和錯誤atc課程正在進行異常移除工作。但我真的需要一種方法來快速找出這些點代表什麼行的原因或數據。 – 2012-07-08 20:15:35
查看輪廓以選擇羣集數量:http://www.mathworks.com/help/toolbox/stats/bq_679x-18.html – Dan 2012-07-09 09:21:35