2016-11-19 66 views
0

我編寫腳本以使用嵌套查詢和elaticsearch-dsl-py獲取一些數據。多次查詢Elasticsearch時的空響應

一切都運行良好,直到我加入while ids_left > 0循環從Elasticsearch的塊中獲取數據。

現在我只在第一個塊中獲得response的數據。對於所有連續的塊,我都有空的響應<Response: []>

這是爲什麼?如何獲得每個塊的響應數據?

from elasticsearch import Elasticsearch 
from elasticsearch_dsl import Search, Q 

ES_HOST = 'es0.dev.lombardia' 
ES_PORT = 9200 
data = {'organizations': [[{'db_name': u'lombardia0', 'id': 10}]], 'ids': ['726GZWQ65682D,506GBBO25953J,977ENPZ91770F']} 
ids = filter(
     lambda x: x != None, 
     map(lambda x: x.strip() if re.match("^[a-zA-Z0-9_]*$", x.strip()) else None, data['ids'][0].split(',')) 
) 
if len(ids) == 0: 
    sys.exit("No valid IDs.") 

organizations = data['organizations'][0] 
total_num_of_ids = len(ids) 
offset, chunk, ids_left = 0, 10, total_num_of_ids 

root_path = 'Demographic_Details' 
es = Elasticsearch(hosts = [{'host': ES_HOST, 'port': ES_PORT}]) 

for organization in organizations: 
    index = 'logic_{0}'.format(organization['db_name']) 

    while ids_left > 0: 
     print('OFFSET %s' % str(offset)) 
     if (offset + chunk) <= total_num_of_ids: 
      limit = offset + chunk 
     else: 
      limit = total_num_of_ids 

     search = None 
     search = Search(using=es).index(index).source(include=[root_path]) 
     q = Q('bool', must=[Q('nested', path=root_path, query=Q('bool', should=[], minimum_should_match=1))]) 
     search = search.query(q) 

     for i in xrange(offset, limit): 
      q = Q('match', **{'{0}.ID'.format(root_path): ids[i]}) 
      search.query.must[0].query.should.append(q) 

     print(search.to_dict()) 
     search = search[offset:limit] 
     response = search.execute() 

     for hit in response: 
      print(hit[root_path][0]['id'], hit[root_path][0]['match']) 

     offset += chunk 
     ids_left -= chunk 

印刷結果:

OFFSET 0查詢

{'query': {'bool': {'must': [{'nested': {'path': 'Demographic_Details', 'query': {'bool': {'minimum_should_match': 1, 'should': [{'match': {'Demographic_Details.ID': u'726GZWQ65682D'}}, {'match': {'Demographic_Details.ID': u'506GBBO25953J'}}, {'match': {'Demographic_Details.ID': u'977ENPZ91770F'}}, {'match': {'Demographic_Details.ID': u'250GDPU44147B'}}, {'match': {'Demographic_Details.ID': u'528FAOH03019V'}}, {'match': {'Demographic_Details.ID': u'827GNXH29227B'}}, {'match': {'Demographic_Details.ID': u'836GWCX91596A'}}, {'match': {'Demographic_Details.ID': u'482VURG98816U'}}, {'match': {'Demographic_Details.ID': u'989VKQX13983W'}}, {'match': {'Demographic_Details.ID': u'900GJVU10735D'}}]}}}}]}}, '_source': {'include': ['Demographic_Details']}} 

響應數據:

-> for hit in response: 
(Pdb) cont 
(u'827GNXH29227B', u'Y') 
(u'250GDPU44147B', u'Y') 
(u'836GWCX91596A', u'Y') 
(u'482VURG98816U', u'Y') 
(u'977ENPZ91770F', u'Y') 
(u'989VKQX13983W', u'Y') 
(u'528FAOH03019V', u'Y') 
(u'900GJVU10735D', u'Y') 
(u'726GZWQ65682D', u'Y') 
(u'506GBBO25953J', u'Y') 

OFFSET 10查詢

{'query': {'bool': {'must': [{'nested': {'path': 'Demographic_Details', 'query': {'bool': {'minimum_should_match': 1, 'should': [{'match': {'Demographic_Details.ID': u'731NBER88448A'}}, {'match': {'Demographic_Details.ID': u'963WLQD56637O'}}, {'match': {'Demographic_Details.ID': u'880RFWM18773C'}}, {'match': {'Demographic_Details.ID': u'037BASP48376D'}}, {'match': {'Demographic_Details.ID': u'554XZQP10563T'}}, {'match': {'Demographic_Details.ID': u'305KTYG96669R'}}, {'match': {'Demographic_Details.ID': u'056XZQI88874A'}}, {'match': {'Demographic_Details.ID': u'294OKUR30033G'}}, {'match': {'Demographic_Details.ID': u'404DDCN87823H'}}, {'match': {'Demographic_Details.ID': u'333UQAN69783V'}}]}}}}]}}, '_source': {'include': ['Demographic_Details']}} 

回答

0

.scan()方法可以訪問所有匹配的文檔。現在,不需要search[offset:limit]切片了,因爲已經爲每個塊創建了單獨的查詢,並且我需要的是獲取查詢的所有結果。

現在的代碼如下所示:

... 
    while ids_left > 0: 
     print('OFFSET %s' % str(offset)) 
     if (offset + chunk) <= total_num_of_ids: 
      limit = offset + chunk 
     else: 
      limit = total_num_of_ids 

     search = Search(using=es).index(index).source(include=[root_path]) 
     q = Q('bool', must=[Q('nested', path=root_path, query=Q('bool', should=[], minimum_should_match=1))]) 
     search = search.query(q) 

     for i in xrange(offset, limit): 
      q = Q('match', **{'{0}.ID'.format(root_path): ids[i]}) 
      search.query.must[0].query.should.append(q) 

     print(search.to_dict()) 

     for hit in search.scan(): 
      print(hit[root_path][0]['id'], hit[root_path][0]['match']) 

     offset += chunk 
     ids_left -= chunk