您可以使用reference manual中描述的策略符號。例如,
Tactic Notation "foo" simple_intropattern(bar) :=
match goal with
| H : ?A /\ ?B |- _ =>
destruct H as bar
end.
Goal True /\ True /\ True -> True.
intros. foo (HA & HB & HC).
的simple_intropattern
指令指示勒柯克解釋bar
作爲前奏型。因此,撥打foo
導致致電destruct H as (HA & HB & HC)
。
下面是一個更長的示例,顯示更復雜的引入模式。
Tactic Notation "my_destruct" hyp(H) "as" simple_intropattern(pattern) :=
destruct H as pattern.
Inductive wondrous : nat -> Prop :=
| one : wondrous 1
| half : forall n k : nat, n = 2 * k -> wondrous k -> wondrous n
| triple_one : forall n k : nat, 3 * n + 1 = k -> wondrous k -> wondrous n.
Lemma oneness : forall n : nat, n = 0 \/ wondrous n.
Proof.
intro n.
induction n as [ | n IH_n ].
(* n = 0 *)
left. reflexivity.
(* n <> 0 *)
right. my_destruct IH_n as
[ H_n_zero
| [
| n' k H_half H_wondrous_k
| n' k H_triple_one H_wondrous_k ] ].
Admitted.
我們可以檢查一個生成的目標,看看如何使用名稱。
oneness < Show 4.
subgoal 4 is:
n : nat
n' : nat
k : nat
H_triple_one : 3 * n' + 1 = k
H_wondrous_k : wondrous k
============================
wondrous (S n')
謝謝!我希望你不介意,但我在你的回答中包含了另一個更多參與(但很愚蠢)的例子。 – phs
根本不是!現在好多了。 –