2017-02-28 68 views
0

我想加載一個大的CSV文件到一個TensorFlow管道,其中每行代表一個扁平的256 * 256圖像。我想概括TensorFlow CSV文件中讀取的例子,但我有麻煩推廣的decode_csv功能器。---我所有的列:廣義Tensorflow CSV加載

def file_len(fname): 
    with open(fname) as f: 
     for i, l in enumerate(f): 
      pass 
    return i + 1 

# setup text reader 
file_length = file_len(filename) 
filename_queue = tf.train.string_input_producer([filename]) 
reader = tf.TextLineReader(skip_header_lines=1) 
_, csv_row = reader.read(filename_queue) 

# setup CSV decoding 
record_defaults = [[0] for i in range(256*256)] 
col = tf.decode_csv(csv_row, record_defaults=record_defaults) 

features = tf.pack([col[i] for i in range(256*256)) 

print("loading, " + str(file_length) + " line(s)\n") 
with tf.Session() as sess: 
    tf.initialize_all_variables().run() 

    # start populating filename queue 
    coord = tf.train.Coordinator() 
    threads = tf.train.start_queue_runners(coord=coord) 

    for i in range(file_length): 
    # retrieve a single instance 
    example, label = sess.run([features, col5]) 
    print(example, label) 

    coord.request_stop() 
    coord.join(threads) 
    print("\ndone loading") 

但是我得到的錯誤

TypeError: Expected list for 'values' argument to 'Pack' Op, not <generator object <genexpr> at 0x12447e2d0> 

如何推廣col1,... colN部分?

回答

0

我的部分愚蠢的錯誤。 tf.pack可以帶一個列表參數,因此不需要將tf.decode_csv的輸出分隔成不同的列。它可以簡單地用

col = tf.decode_csv(csv_row, record_defaults=record_defaults) 
features = tf.pack(col)