1
嘗試查詢sql server表時出錯請幫忙。在查詢sql server表時出現sql錯誤
臨時表不允許指定數據庫名稱或其他限定符。如果表名中有點(。),請用反引號(`)引用表名。
val sqlContext = new org.apache.spark.sql.SQLContext(sc)
val querytest=sqlContext.sql(query)
val prop=new Properties()
val url2="jdbc:sqlserver://localhost;user=admin;password=oracle;database=AdventureWorks2014"
prop.setProperty("user","admin")
prop.setProperty("password","oracle")
val test=sqlContext.read.jdbc(url2,"Customer",prop)
到工作的代碼所做的更改: -
package com.kali.db
/**
* Created by kalit_000 on 06/12/2015.
*/
import java.util.Properties
import org.apache.spark.SparkConf
import org.apache.log4j.Logger
import org.apache.log4j.Level
import org.apache.spark._
import org.apache.spark.rdd.{JdbcRDD, RDD}
import org.apache.spark.sql.DataFrame
import org.springframework.context.support.ClassPathXmlApplicationContext
case class SparkSqlValueClassMPP(driver:String,url:String,username:String,password:String,table:String,opdelimeter:String,lowerbound:String,upperbound:String,numberofparitions:String,parallelizecolumn:String)
object SparkDBExtractorMPP {
def main (args: Array[String]) {
Logger.getLogger("org").setLevel(Level.WARN)
Logger.getLogger("akka").setLevel(Level.WARN)
val conf = new SparkConf().setMaster("local[*]").setAppName("SparkDBExtractorMPP").set("spark.hadoop.validateOutputSpecs", "false")
val sc = new SparkContext(conf)
def opfile(value:DataFrame,delimeter:String):RDD[String]=
{
value.map(x => x.toString.replace("[","").replace("]","").replace(",",delimeter))
}
//read the application context file
val ctx = new ClassPathXmlApplicationContext("sparkDBExtractorMpp.xml")
val DBinfo = ctx.getBean("SparkSQLDBExtractorMPP").asInstanceOf[SparkSqlValueClassMPP]
val driver = DBinfo.driver
val url = DBinfo.url
val username = DBinfo.username
val password = DBinfo.password
val table = DBinfo.table
val opdelimeter=DBinfo.opdelimeter
val lowerbound=DBinfo.lowerbound.toInt
val upperbound=DBinfo.upperbound.toInt
val numberofpartitions=DBinfo.numberofparitions.toInt
val parallelizecolumn=DBinfo.parallelizecolumn
println("DB Driver:-%s".format(driver))
println("DB Url:-%s".format(url))
println("Username:-%s".format(username))
println("Password:-%s".format(password))
println("Table:-%s".format(table))
println("Opdelimeter:-%s".format(opdelimeter))
println("Lowerbound:-%s".format(lowerbound))
println("Upperbound:-%s".format(upperbound))
println("Numberofpartitions:-%s".format(numberofpartitions))
println("Parallelizecolumn:-%s".format(parallelizecolumn))
try {
val props=new Properties()
props.put("user",username)
props.put("password",password)
props.put("driver",driver)
val sqlContext = new org.apache.spark.sql.SQLContext(sc)
val df = sqlContext.read.jdbc(url,table,parallelizecolumn,lowerbound,upperbound,numberofpartitions,props)
df.show(10)
opfile(df,opdelimeter).saveAsTextFile("C:\\Users\\kalit_000\\Desktop\\typesafe\\scaladbop\\op.txt")
} catch {
case e: Exception => e.printStackTrace
}
sc.stop()
}
}
我使用的Spring bean使火花代碼配置
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE beans PUBLIC "-//SPRING//DTD BEAN//EN"
"http://www.springframework.org/dtd/spring-beans.dtd">
<beans>
<bean id="queryProps" class="org.springframework.beans.factory.config.PropertiesFactoryBean">
</bean>
<bean id="SparkSQLDBExtractorMPP" class="com.kali.db.SparkSqlValueClassMPP">
<constructor-arg value="com.microsoft.sqlserver.jdbc.SQLServerDriver" />
<constructor-arg value="jdbc:sqlserver://localhost;user=admin;password=oracle;database=AdventureWorks2014" />
<constructor-arg value="admin" />
<constructor-arg value="oracle" />
<constructor-arg value="(select top 100 CustomerID,StoreID,TerritoryID,AccountNumber,ModifiedDate from customer) as customer" />
<constructor-arg value="~" />
<constructor-arg value="1" />
<constructor-arg value="100" />
<constructor-arg value="8" />
<constructor-arg value="CustomerID" />
</bean>
</beans>
我不想列名是硬編碼,而從結果集中獲取數據還有另外一種方法,我想通過傳遞值(db,url,用戶名,密碼,查詢)到Spring框架來重用我的代碼,我的代碼應該連接到任何數據庫並將數據轉儲到文件我試過Jd bcRDD唯一的問題,我們需要在r.getString(1)處提及我不想要的列名,val myRDD = new JdbcRDD(sc,()=> DriverManager.getConnection(url,username,password),query + 「哪裏? =? 「,1,1,1, r => r.getString(1)+」,「+ r.getString(2)+」,「+ r.getString(3)) –
我不知道如果我得到但是我認爲你可以通過變量來傳遞列名,或者你可以通過select *將所有表加載到數據框,然後使用數據框選擇你的查詢更加靈活和更快 – zt1983811
我可以在df上編寫普通的sql嗎? val sqlContext = new org.apache.spark.sql.SQLContext(sc)val df = sqlContext.read.format(「jdbc」)。options(Map(「url」 - > url,「dbtable」 - >「customer」, 「查詢」 - >查詢,「驅動程序」 - >驅動程序))。load() –