2017-01-17 95 views
10

我在Windows 10上使用R 3.3.1(64位)。我有一個x-y數據集,適合二階多項式。我想在y = 4時求解x的最佳擬合多項式,並繪製從y = 4到x軸的下拉線。解決最佳擬合多項式和繪製下拉線

這將在一個數據幀V1生成數據:

v1 <- structure(list(x = c(-5.2549, -3.4893, -3.5909, -2.5546, -3.7247, 
-5.1733, -3.3451, -2.8993, -2.6835, -3.9495, -4.9649, -2.8438, 
-4.6926, -3.4768, -3.1221, -4.8175, -4.5641, -3.549, -3.08, -2.4153, 
-2.9882, -3.4045, -4.6394, -3.3404, -2.6728, -3.3517, -2.6098, 
-3.7733, -4.051, -2.9385, -4.5024, -4.59, -4.5617, -4.0658, -2.4986, 
-3.7559, -4.245, -4.8045, -4.6615, -4.0696, -4.6638, -4.6505, 
-3.7978, -4.5649, -5.7669, -4.519, -3.8561, -3.779, -3.0549, 
-3.1241, -2.1423, -3.2759, -4.224, -4.028, -3.3412, -2.8832, 
-3.3866, -0.1852, -3.3763, -4.317, -5.3607, -3.3398, -1.9087, 
-4.431, -3.7535, -3.2545, -0.806, -3.1419, -3.7269, -3.4853, 
-4.3129, -2.8891, -3.0572, -5.3309, -2.5837, -4.1128, -4.6631, 
-3.4695, -4.1045, -7.064, -5.1681, -6.4866, -2.7522, -4.6305, 
-4.2957, -3.7552, -4.9482, -5.6452, -6.0302, -5.3244, -3.9819, 
-3.8123, -5.3085, -5.6096, -6.4557), y = c(0.99, 0.56, 0.43, 
2.31, 0.31, 0.59, 0.62, 1.65, 2.12, 0.1, 0.24, 1.68, 0.09, 0.59, 
1.23, 0.4, 0.36, 0.49, 1.41, 3.29, 1.22, 0.56, 0.1, 0.67, 2.38, 
0.43, 1.56, 0.07, 0.08, 1.53, -0.01, 0.12, 0.1, 0.04, 3.42, 0.23, 
0, 0.34, 0.15, 0.03, 0.19, 0.17, 0.2, 0.09, 2.3, 0.07, 0.15, 
0.18, 1.07, 1.21, 3.4, 0.8, -0.04, 0.02, 0.74, 1.59, 0.71, 10.64, 
0.64, -0.01, 1.06, 0.81, 4.58, 0.01, 0.14, 0.59, 7.35, 0.63, 
0.17, 0.38, -0.08, 1.1, 0.89, 0.94, 1.52, 0.01, 0.1, 0.38, 0.02, 
7.76, 0.72, 4.1, 1.36, 0.13, -0.02, 0.13, 0.42, 1.49, 2.64, 1.01, 
0.08, 0.22, 1.01, 1.53, 4.39)), .Names = c("x", "y"), class = "data.frame", row.names = c(NA, 
-95L)) 

下面的代碼來標繪Y VS的x,繪製最佳擬合多項式,並且在y = 4畫一條線。

> attach(v1) 
> # simple x-y plot of the data 
> plot(x,y, pch=16) 
> # 2nd order polynomial fit 
> fit2 <- lm(y~poly(x,2,raw=TRUE)) 
> summary(fit2) 
> # generate range of numbers for plotting polynomial 
> xx <- seq(-8,0, length=50) 
> # overlay best fit polynomial 
>lines(xx, predict(fit2, data.frame(x=xx)), col="blue") 
> # add horizontal line at y=4 
> abline(h=4, col="red") 
> 

很明顯從使y在圍繞X -2 -6.5 = 4的情節,但我想真正解決迴歸多項式這些值。理想情況下,我想要從紅藍線交點到x軸(即繪製垂直線,終止於兩個y = 4解)的線條。如果這是不可能的,只要它們處於合適的x解決方案價值,我會很高興與良好的舊垂直ablines一路上漲的情節。

此圖表示當y> 4時將超出規格的零件,因此我想使用下拉線突出顯示將生成規格內部件的x值的範圍。

回答

10

可以使用二次公式計算的值:

betas <- coef(fit2) # get coefficients 
betas[1] <- betas[1] - 4 # adjust intercept to look for values where y = 4 

# note degree increases, so betas[1] is c, etc. 
betas 
##    (Intercept) poly(x, 2, raw = TRUE)1 poly(x, 2, raw = TRUE)2 
##    8.7555833    6.0807302    0.7319848 

solns <- c((-betas[2] + sqrt(betas[2]^2 - 4 * betas[3] * betas[1]))/(2 * betas[3]), 
      (-betas[2] - sqrt(betas[2]^2 - 4 * betas[3] * betas[1]))/(2 * betas[3])) 

solns 
## poly(x, 2, raw = TRUE)1 poly(x, 2, raw = TRUE)1 
##    -1.853398    -6.453783 

segments(solns, -1, solns, 4, col = 'green') # add segments to graph 

plot with segments

更簡單(如果你能找到它)是polyroot

polyroot(betas) 
## [1] -1.853398+0i -6.453783+0i 

因爲它返回一個複雜的矢量,你需要把它包在as.numeric,如果你想將它傳遞給segments

6

你有一元二次方程

0.73198 * x^2 + 6.08073 * x + 12.75558 = 4 
OR 
0.73198 * x^2 + 6.08073 * x + 8.75558 = 0 

你可以使用二次公式來分析解決這個問題。 R已適時提供的兩個根:

(-6.08073 + sqrt(6.08073^2 -4*0.73198 * 8.75558))/(2 * 0.73198) 
[1] -1.853392 
(-6.08073 - sqrt(6.08073^2 -4*0.73198 * 8.75558))/(2 * 0.73198) 
[1] -6.453843 

abline(V = C(-1.853392,-6.453843))

Image with drop down lines

8

我絕對明白這個簡單的二次多項式有一個解析解。我向你展示數值解答的原因是你在迴歸設置中提出這個問題。當你有更復雜的迴歸曲線時,數值解決方案可能總是你的解決方案。

在下面我將使用uniroot函數。如果您不熟悉它,請先閱讀以下簡短答案:Uniroot solution in R


enter image description here

這是你的代碼生成的情節。你幾乎在那裏。這是根本發現問題,您可以使用uniroot。讓我們定義一個函數:

f <- function (x) { 
    ## subtract 4 
    predict(fit2, newdata = data.frame(x = x)) - 4 
    } 

從圖中很明顯有兩個根源,一個裏面[-7, -6],其他內[-3, -1]。我們使用uniroot找到兩個:

x1 <- uniroot(f, c(-7, -6))$root 
#[1] -6.453769 

x2 <- uniroot(f, c(-3, -1))$root 
#[1] -1.853406 

現在你可以將這些點的垂直線下降到X軸:

y1 <- f(x1) + 4 ## add 4 back 
y2 <- f(x2) + 4 

abline(h = 0, col = 4) ## x-axis 
segments(x1, 0, x1, y1, lty = 2) 
segments(x2, 0, x2, y2, lty = 2) 

enter image description here

4

這裏是一個多解決方案的基礎上, this

attach(v1) 
fit2 = lm(y~poly(x,2,raw=TRUE)) 
xx = seq(-8,0, length=50) 

vector1 = predict(fit2, data.frame(x=xx)) 
vector2= replicate(length(vector1),4) 

# Find points where vector1 is above vector2. 
above = vector1 > vector2 

# Points always intersect when above=TRUE, then FALSE or reverse 
intersect.points = which(diff(above)!=0)  

# Find the slopes for each line segment. 
vector1.slopes = vector1[intersect.points+1] - vector1[intersect.points] 
vector2.slopes = vector2[intersect.points+1] - vector2[intersect.points] 

# Find the intersection for each segment. 
x.points = intersect.points + ((vector2[intersect.points] - vector1[intersect.points])/(vector1.slopes-vector2.slopes)) 
y.points = vector1[intersect.points] + (vector1.slopes*(x.points-intersect.points)) 

#Scale x.points to the axis value of xx 
x.points = xx[1] + ((x.points - 1)/(49))*(xx[50]-xx[1]) 

plot(xx, y = vector1, type= "l", col = "blue") 
points(x,y,pch = 20) 
lines(x = c(x.points[1],x.points[1]), y = c(0,y.points[1]), col='red') 
lines(x = c(x.points[2],x.points[2]), y = c(0,y.points[2]), col='red') 

enter image description here

4

已經提出了許多解決方案,下面是另一個解決方案。我們有興趣找到滿足多項式(二次)方程a_0 + a_1.x + a_2.x^2 = 4x值,其中a_0, a_1, a_2是擬合多項式的係數。我們可以重寫方程作爲標準二次方程ax^2+bx+c=0和發現使用利用與多項式迴歸擬合多項式的係數Sridhar's式根如下:

enter image description here

a <- fit2$coefficients[3] 
b <- fit2$coefficients[2] 
c <- fit2$coefficients[1] - 4 

as.numeric((-b + sqrt(b^2-4*a*c))/(2*a)) 
#[1] -1.853398 
as.numeric((-b-+ sqrt(b^2-4*a*c))/(2*a)) 
#[1] -6.453783 

我們可以用一些數值的方法,例如作爲Newton-Raphson找到根源(雖然有更快的數值方法,但這會解決我們的目的,而且速度也很快,我的機器上需要~160 ms),正如我們從下面的代碼中可以看到的那樣,數值和理論解決方案達成一致。

a <- fit2$coefficients # fitted quadratic polynomial coefficients 

f <- function(x) { 
    as.numeric(a[1] + a[2]*x + a[3]*x^2-4) 
} 

df <- function(x) { 
    as.numeric(a[2] + 2*a[3]*x) 
} 

Newton.Raphson <- function(x0) { 
    eps <- 1e-6 
    x <- x0 
    while(TRUE) { 
    x <- x0 - f(x0)/df(x0) 
    if (abs(x - x0) < eps) { 
     return(x0) 
    } 
    x0 <- x 
    } 
} 

t1 <- Sys.time() 
x1 <- Newton.Raphson(-10) 
x2 <- Newton.Raphson(10) 
x1 
#[1] -6.453783 
x2 
#[1] -1.853398 
s2 
print(paste('time taken to compute the roots:' ,Sys.time() - t1)) 
#[1] "time taken to compute the roots: 0.0160109996795654" 
points(x1, 4, pch=19, col='green') 
points(x2, 4, pch=19, col='green') 
abline(v=x1, col='green') 
abline(v=x2, col='green') 

enter image description here