還有比重複排列少得多的重複組合,因此,讓我們找到總和爲給定值的重複組合,然後對其中的每一個進行排列。此外,通過在計算的幾個步驟中的每一步應用uniq
,我們可以顯着減少所考慮的重複組合和排列的數量。
代碼
require 'set'
def rep_perms_for_all(arr, n_arr, tot)
n_arr.flat_map { |n| rep_perms_for_1(arr, n, tot) }
end
def rep_perms_for_1(arr, n, tot)
rep_combs_to_rep_perms(rep_combs_for_1(arr, n, tot)).uniq
end
def rep_combs_for_1(arr, n, tot)
arr.repeated_combination(n).uniq.select { |c| c.sum == tot }
end
def rep_combs_to_rep_perms(combs)
combs.flat_map { |c| comb_to_perms(c) }.uniq
end
def comb_to_perms(comb)
comb.permutation(comb.size).uniq.uniq do |p|
p.size.times.with_object(Set.new) { |i,s| s << p.rotate(i) }
end
end
實例
rep_perms_for_all([2,3,4,5], [3], 12)
#=> [[2, 5, 5], [3, 4, 5], [3, 5, 4], [4, 4, 4]]
rep_perms_for_all([2,3,4,5,6,7,8], [3,4,5], 16).size
#=> 93
rep_perms_for_all([2,3,4,5,6,7,8], [3,4,5], 16)
#=> [[2, 6, 8], [2, 8, 6], [2, 7, 7], [3, 5, 8], [3, 8, 5], [3, 6, 7],
# [3, 7, 6], [4, 4, 8], [4, 5, 7], [4, 7, 5], [4, 6, 6], [5, 5, 6],
# [2, 2, 4, 8], [2, 2, 8, 4], [2, 4, 2, 8], [2, 2, 5, 7], [2, 2, 7, 5],
# [2, 5, 2, 7], [2, 2, 6, 6], [2, 6, 2, 6], [2, 3, 3, 8], [2, 3, 8, 3],
# ...
# [3, 3, 3, 7], [3, 3, 4, 6], [3, 3, 6, 4], [3, 4, 3, 6], [3, 3, 5, 5],
# [3, 5, 3, 5], [3, 4, 4, 5], [3, 4, 5, 4], [3, 5, 4, 4], [4, 4, 4, 4],
# ...
# [2, 2, 4, 5, 3], [2, 2, 5, 3, 4], [2, 2, 5, 4, 3], [2, 3, 2, 4, 5],
# [2, 3, 2, 5, 4], [2, 3, 4, 2, 5], [2, 3, 5, 2, 4], [2, 4, 2, 5, 3],
# ...
# [2, 5, 3, 3, 3], [2, 3, 3, 4, 4], [2, 3, 4, 3, 4], [2, 3, 4, 4, 3],
# [2, 4, 3, 3, 4], [2, 4, 3, 4, 3], [2, 4, 4, 3, 3], [3, 3, 3, 3, 4]]
說明
rep_combs_for_1
使用方法Enumerable#sum,這在紅寶石V2.4首次亮相。對於早期版本,請使用c.reduce(:0) == tot
。
在comb_to_perms
中,第一個uniq
只是刪除重複項。第二個uniq
帶有一個塊,除去可以通過旋轉任何其他p-1
元素獲得的所有p.size
元素(數組)。例如,
p = [1,2,3]
p.size.times.with_object(Set.new) { |i,s| s << p.rotate(i) }
#=> #<Set: {[1, 2, 3], [2, 3, 1], [3, 1, 2]}>
['Array#repeated_permutation'](https://ruby-doc.org/core/Array.html#method-i-repeated_permutation)。 – mudasobwa
數字是否必須是非負數? –