當我的Floating-Point Guide昨天是published on slashdot時,我對我的建議comparison function感到非常不滿,這確實是不夠的。所以我終於做了明智的事情,並寫了一個測試套件,看看我能否讓他們全部通過。這是我迄今爲止的結果。我想知道這是否真的像泛型(即不是特定於應用程序)的float比較函數一樣好,還是我仍然錯過了一些邊緣情況。這個函數比較浮點數有什麼問題嗎?
(代碼更新來修復錯誤)
import static org.junit.Assert.assertFalse;
import static org.junit.Assert.assertTrue;
import org.junit.Test;
/**
* Test suite to demonstrate a good method for comparing floating-point values using an epsilon. Run via JUnit 4.
*
* Note: this function attempts a "one size fits all" solution. There may be some edge cases for which it still
* produces unexpected results, and some of the tests it was developed to pass probably specify behaviour that is
* not appropriate for some applications. Before using it, make sure it's appropriate for your application!
*
* From http://floating-point-gui.de
*
* @author Michael Borgwardt
*/
public class NearlyEqualsTest {
public static boolean nearlyEqual(float a, float b, float epsilon) {
final float absA = Math.abs(a);
final float absB = Math.abs(b);
final float diff = Math.abs(a - b);
if (a * b == 0) { // a or b or both are zero
// relative error is not meaningful here
return diff < (epsilon * epsilon);
} else { // use relative error
return diff/(absA + absB) < epsilon;
}
}
public static boolean nearlyEqual(float a, float b) {
return nearlyEqual(a, b, 0.000001f);
}
/** Regular large numbers - generally not problematic */
@Test
public void big() {
assertTrue(nearlyEqual(1000000f, 1000001f));
assertTrue(nearlyEqual(1000001f, 1000000f));
assertFalse(nearlyEqual(10000f, 10001f));
assertFalse(nearlyEqual(10001f, 10000f));
}
/** Negative large numbers */
@Test
public void bigNeg() {
assertTrue(nearlyEqual(-1000000f, -1000001f));
assertTrue(nearlyEqual(-1000001f, -1000000f));
assertFalse(nearlyEqual(-10000f, -10001f));
assertFalse(nearlyEqual(-10001f, -10000f));
}
/** Numbers around 1 */
@Test
public void mid() {
assertTrue(nearlyEqual(1.0000001f, 1.0000002f));
assertTrue(nearlyEqual(1.0000002f, 1.0000001f));
assertFalse(nearlyEqual(1.0002f, 1.0001f));
assertFalse(nearlyEqual(1.0001f, 1.0002f));
}
/** Numbers around -1 */
@Test
public void midNeg() {
assertTrue(nearlyEqual(-1.000001f, -1.000002f));
assertTrue(nearlyEqual(-1.000002f, -1.000001f));
assertFalse(nearlyEqual(-1.0001f, -1.0002f));
assertFalse(nearlyEqual(-1.0002f, -1.0001f));
}
/** Numbers between 1 and 0 */
@Test
public void small() {
assertTrue(nearlyEqual(0.000000001000001f, 0.000000001000002f));
assertTrue(nearlyEqual(0.000000001000002f, 0.000000001000001f));
assertFalse(nearlyEqual(0.000000000001002f, 0.000000000001001f));
assertFalse(nearlyEqual(0.000000000001001f, 0.000000000001002f));
}
/** Numbers between -1 and 0 */
@Test
public void smallNeg() {
assertTrue(nearlyEqual(-0.000000001000001f, -0.000000001000002f));
assertTrue(nearlyEqual(-0.000000001000002f, -0.000000001000001f));
assertFalse(nearlyEqual(-0.000000000001002f, -0.000000000001001f));
assertFalse(nearlyEqual(-0.000000000001001f, -0.000000000001002f));
}
/** Comparisons involving zero */
@Test
public void zero() {
assertTrue(nearlyEqual(0.0f, 0.0f));
assertTrue(nearlyEqual(0.0f, -0.0f));
assertTrue(nearlyEqual(-0.0f, -0.0f));
assertFalse(nearlyEqual(0.00000001f, 0.0f));
assertFalse(nearlyEqual(0.0f, 0.00000001f));
assertFalse(nearlyEqual(-0.00000001f, 0.0f));
assertFalse(nearlyEqual(0.0f, -0.00000001f));
assertTrue(nearlyEqual(0.0f, 0.00000001f, 0.01f));
assertTrue(nearlyEqual(0.00000001f, 0.0f, 0.01f));
assertFalse(nearlyEqual(0.00000001f, 0.0f, 0.000001f));
assertFalse(nearlyEqual(0.0f, 0.00000001f, 0.000001f));
assertTrue(nearlyEqual(0.0f, -0.00000001f, 0.1f));
assertTrue(nearlyEqual(-0.00000001f, 0.0f, 0.1f));
assertFalse(nearlyEqual(-0.00000001f, 0.0f, 0.00000001f));
assertFalse(nearlyEqual(0.0f, -0.00000001f, 0.00000001f));
}
/** Comparisons of numbers on opposite sides of 0 */
@Test
public void opposite() {
assertFalse(nearlyEqual(1.000000001f, -1.0f));
assertFalse(nearlyEqual(-1.0f, 1.000000001f));
assertFalse(nearlyEqual(-1.000000001f, 1.0f));
assertFalse(nearlyEqual(1.0f, -1.000000001f));
assertTrue(nearlyEqual(1e10f * Float.MIN_VALUE, -1e10f * Float.MIN_VALUE));
}
/**
* The really tricky part - comparisons of numbers very close to zero.
*/
@Test
public void ulp() {
assertTrue(nearlyEqual(Float.MIN_VALUE, -Float.MIN_VALUE));
assertTrue(nearlyEqual(-Float.MIN_VALUE, Float.MIN_VALUE));
assertTrue(nearlyEqual(Float.MIN_VALUE, 0));
assertTrue(nearlyEqual(0, Float.MIN_VALUE));
assertTrue(nearlyEqual(-Float.MIN_VALUE, 0));
assertTrue(nearlyEqual(0, -Float.MIN_VALUE));
assertFalse(nearlyEqual(0.000000001f, -Float.MIN_VALUE));
assertFalse(nearlyEqual(0.000000001f, Float.MIN_VALUE));
assertFalse(nearlyEqual(Float.MIN_VALUE, 0.000000001f));
assertFalse(nearlyEqual(-Float.MIN_VALUE, 0.000000001f));
assertFalse(nearlyEqual(1e25f * Float.MIN_VALUE, 0.0f, 1e-12f));
assertFalse(nearlyEqual(0.0f, 1e25f * Float.MIN_VALUE, 1e-12f));
assertFalse(nearlyEqual(1e25f * Float.MIN_VALUE, -1e25f * Float.MIN_VALUE, 1e-12f));
assertTrue(nearlyEqual(1e25f * Float.MIN_VALUE, 0.0f, 1e-5f));
assertTrue(nearlyEqual(0.0f, 1e25f * Float.MIN_VALUE, 1e-5f));
assertTrue(nearlyEqual(1e20f * Float.MIN_VALUE, -1e20f * Float.MIN_VALUE, 1e-5f));
}
}
Slashdot上的精英分子可能非常殘酷。 – ChaosPandion 2010-05-03 20:57:56
@Chaos:而且往往是不正確的 – 2010-05-03 21:08:11
我的觀點是,我完全應該嘗試撰寫權威的源代碼,並且爲我建議的「良好」比較函數編寫測試套件過於草率地受到批評。 – 2010-05-03 21:19:24