2014-12-25 85 views
1

更新:clEnqueueReadBuffer(command_queue, c_mem_obj, CL_TRUE, 0, LIST_SIZE * sizeof(double), C, 0, NULL, NULL);正在返回-5,CL_OUT_OF_RESOURCES。這個功能/調用不應該返回這個!OpenCL限制循環大小?

我已經開始使用OpenCL並遇到了問題。如果我允許一個for循環(在內核中)運行10000次,如果我允許循環運行8000次,則所有C都爲0,結果都是正確的。

我已經添加了圍繞內核的等待以確保它完成,認爲我在完成前拉出數據並嘗試了Clwaitforevent和CLFinish。任何通話都不會發出錯誤信號。當我使用ints for循環將工作在4000000的大小。浮動和雙打有同樣的問題,但浮動工作在10000,但不是在20000,當我使用浮動我刪除#pragma OPENCL EXTENSION cl_khr_fp64 : enable檢查是不是問題。

這是一些奇怪的記憶事情,我使用OpenCL錯了嗎?我意識到在大多數內核中,我沒有爲這樣的循環實現,但這似乎是一個問題。我也刪除__private,看看這是不是問題,沒有改變。那麼OpenCL內核中for循環的大小是否有限制?具體是硬件嗎?或者這是一個錯誤?內核是一個簡單的內核,它將兩個數組(A + B)加在一起並輸出另一個(C)。爲了獲得性能感覺,我在每次計算中都放了一個for循環來減慢/增加每次運行的操作次數。

爲內核的代碼如下:

#pragma OPENCL EXTENSION cl_khr_fp64 : enable 

__kernel void vector_add(__global double *A, __global double *B, __global double *C) 
{ 

    // Get the index of the current element 
    int i = get_global_id(0); 

    // Do the operation 

    for (__private unsigned int j = 0; j < 10000; j++) 
    { 
     C[i] = A[i] + B[i]; 
    } 
} 

我跑的代碼如下:(我保證,當我float和double之間切換的變量的代碼兩片之間保持一致)

#include <stdio.h> 
#include <stdlib.h> 
#include <iostream> 

#ifdef __APPLE__ 
#include <OpenCL/opencl.h> 
#else 
#include <CL/cl.h> 
#endif 

#define MAX_SOURCE_SIZE (0x100000) 

int main(void) { 
    // Create the two input vectors 
    int i; 
    const int LIST_SIZE = 4000000; 
    double *A = (double*)malloc(sizeof(double)*LIST_SIZE); 
    double *B = (double*)malloc(sizeof(double)*LIST_SIZE); 
    for(i = 0; i < LIST_SIZE; i++) { 
     A[i] = static_cast<double>(i); 
     B[i] = static_cast<double>(LIST_SIZE - i); 
    } 

    // Load the kernel source code into the array source_str 
    FILE *fp; 
    char *source_str; 
    size_t source_size; 

    fp = fopen("vector_add_kernel.cl", "r"); 
    if (!fp) { 
     fprintf(stderr, "Failed to load kernel.\n"); 
     exit(1); 
    } 
    source_str = (char*)malloc(MAX_SOURCE_SIZE); 
    source_size = fread(source_str, 1, MAX_SOURCE_SIZE, fp); 
    fclose(fp); 

    // Get platform and device information 
    cl_platform_id platform_id = NULL; 
    cl_device_id device_id = NULL; 
    cl_uint ret_num_devices; 
    cl_uint ret_num_platforms; 
// clGetPlatformIDs(1, &platform_id, NULL); 
//clGetDeviceIDs(platform_id, CL_DEVICE_TYPE_GPU, 1, &device_id, ret_num_devices); 


    cl_int ret = clGetPlatformIDs(1, &platform_id, NULL); 
       if (ret != CL_SUCCESS) { 
printf("Error: Failed to get platforms! (%d) \n", ret); 
return EXIT_FAILURE; 
} 
    ret = clGetDeviceIDs(platform_id, CL_DEVICE_TYPE_GPU, 1, &device_id, &ret_num_devices); 
      if (ret != CL_SUCCESS) { 
printf("Error: Failed to query platforms to get devices! (%d) \n", ret); 
return EXIT_FAILURE; 
} 
/* 
    cl_int ret = clGetPlatformIDs(1, &platform_id, NULL); 
       if (ret != CL_SUCCESS) { 
printf("Error: Failed to get platforms! (%d) \n", ret); 
return EXIT_FAILURE; 
} 
    ret = clGetDeviceIDs(platform_id, CL_DEVICE_TYPE_CPU, 1, 
      &device_id, &ret_num_devices); 
      if (ret != CL_SUCCESS) { 
printf("Error: Failed to query platforms to get devices! (%d) \n", ret); 
return EXIT_FAILURE; 
} 
*/ 
    // Create an OpenCL context 
    cl_context context = clCreateContext(NULL, 1, &device_id, NULL, NULL, &ret); 

    // Create a command queue 
    cl_command_queue command_queue = clCreateCommandQueue(context, device_id, 0, &ret); 

    // Create memory buffers on the device for each vector 
    cl_mem a_mem_obj = clCreateBuffer(context, CL_MEM_READ_ONLY, 
      LIST_SIZE * sizeof(double), NULL, &ret); 
    cl_mem b_mem_obj = clCreateBuffer(context, CL_MEM_READ_ONLY, 
      LIST_SIZE * sizeof(double), NULL, &ret); 
    cl_mem c_mem_obj = clCreateBuffer(context, CL_MEM_WRITE_ONLY, 
      LIST_SIZE * sizeof(double), NULL, &ret); 
      if (ret != CL_SUCCESS) { 
printf("Error: Buffer Fail! (%d) \n", ret); 
return EXIT_FAILURE; 
} 

    // Copy the lists A and B to their respective memory buffers 
    ret = clEnqueueWriteBuffer(command_queue, a_mem_obj, CL_TRUE, 0, 
      LIST_SIZE * sizeof(double), A, 0, NULL, NULL); 
    ret = clEnqueueWriteBuffer(command_queue, b_mem_obj, CL_TRUE, 0, 
      LIST_SIZE * sizeof(double), B, 0, NULL, NULL); 

    std::cout << "Begin Compile" << "\n"; 
    // Create a program from the kernel source 
    cl_program program = clCreateProgramWithSource(context, 1, 
      (const char **)&source_str, (const size_t *)&source_size, &ret); 
      if (ret != CL_SUCCESS) { 
printf("Error: Program Fail! (%d) \n", ret); 
return EXIT_FAILURE; 
} 

    // Build the program 
    ret = clBuildProgram(program, 1, &device_id, NULL, NULL, NULL); 
    if (ret != CL_SUCCESS) { 
printf("Error: ProgramBuild Fail! (%d) \n", ret); 
return EXIT_FAILURE; 
} 

    // Create the OpenCL kernel 
    cl_kernel kernel = clCreateKernel(program, "vector_add", &ret); 
    if (ret != CL_SUCCESS) { 
printf("Error: Kernel Build Fail! (%d) \n", ret); 
return EXIT_FAILURE; 
} 
    std::cout << "End Compile" << "\n"; 

    std::cout << "Begin Data Move" << "\n"; 
    // Set the arguments of the kernel 
    ret = clSetKernelArg(kernel, 0, sizeof(cl_mem), (void *)&a_mem_obj); 
    ret = clSetKernelArg(kernel, 1, sizeof(cl_mem), (void *)&b_mem_obj); 
    ret = clSetKernelArg(kernel, 2, sizeof(cl_mem), (void *)&c_mem_obj); 
    std::cout << "End Data Move" << "\n"; 

    // Execute the OpenCL kernel on the list 
    size_t global_item_size = LIST_SIZE; // Process the entire lists 
    size_t local_item_size = 64; // Process in groups of 64 

    std::cout << "Begin Execute" << "\n"; 
    cl_event event; 
    ret = clEnqueueNDRangeKernel(command_queue, kernel, 1, NULL, 
      &global_item_size, &local_item_size, 0, NULL, &event); 
      clFinish(command_queue); 
      //clWaitForEvents(1, &event); 
    std::cout << "End Execute" << "\n"; 
    if (ret != CL_SUCCESS) { 
printf("Error: Execute Fail! (%d) \n", ret); 
return EXIT_FAILURE; 
} 

    // Read the memory buffer C on the device to the local variable C 
    std::cout << "Begin Data Move" << "\n"; 

    double *C = (double*)malloc(sizeof(double)*LIST_SIZE); 
    ret = clEnqueueReadBuffer(command_queue, c_mem_obj, CL_TRUE, 0, 
      LIST_SIZE * sizeof(double), C, 0, NULL, NULL); 
      if (ret != CL_SUCCESS) { 
      printf("Error: Read Fail! (%d) \n", ret); 
      return EXIT_FAILURE; 
      } 
      clFinish(command_queue); 
    std::cout << "End Data Move" << "\n"; 

    std::cout << "Done" << "\n"; 
    std::cin.get(); 
    // Display the result to the screen 
    for(i = 0; i < LIST_SIZE; i++) 
     printf("%f + %f = %f \n", A[i], B[i], C[i]); 

    // Clean up 
    ret = clFlush(command_queue); 
    ret = clFinish(command_queue); 
    ret = clReleaseKernel(kernel); 
    ret = clReleaseProgram(program); 
    ret = clReleaseMemObject(a_mem_obj); 
    ret = clReleaseMemObject(b_mem_obj); 
    ret = clReleaseMemObject(c_mem_obj); 
    ret = clReleaseCommandQueue(command_queue); 
    ret = clReleaseContext(context); 
    free(A); 
    free(B); 
    free(C); 
    std::cout << "Number of Devices: " << ret_num_devices << "\n"; 
    std::cin.get(); 
    return 0; 
} 

我已經在互聯網上一看,並不能找到有類似問題的人來說,這是一個問題,因爲它可能會導致該直到擴大行之有效代碼...

我正在運行Ubuntu 14.04,並且有一臺筆記本電腦顯卡,用於與大黃蜂/ optirun一起運行的RC520。如果這個錯誤在其他機器上無法重現,最大4000000的循環大小,那麼我將記錄一個bug,使用bumblebee/optirun。

乾杯

+0

C++ or C?如果你不確定:除了最後的'cout'(並且用'printf'替換它們不會改變一件事物),它看起來像純C一樣可疑。 – usr2564301

+0

@Jongware它是C++的,因爲cout,但是,它並不重要?正如我在帖子中提到的,我只關心內核在某些情況下無法正常工作。只要c/C++代碼沒有使用OpenCL api錯誤,它可能是python中我所關心的。 – Thorrex

+2

'沒有任何錯誤通過任何調用發出.'您發佈的代碼實際上並不檢查OpenCL調用的所有結果。這是你測試的代碼嗎? –

回答

2

我發現了問題,連接到顯示器/主動的VGA /等的GPU有一個看門狗定時器,該超時後〜5秒。這種情況對於不是特斯拉的卡片來說,它具有關閉此功能的功能。在輔助卡上運行是一種解決方法。這很糟糕,需要儘快修復。這絕對是一個NVidia問題,無論如何,對AMD都不確定,這太可怕了。

解決方法是在Windows和註冊表的變化,在Linux的/ Ubuntu的,改變X的conf和配售:

選項 「互動」, 「0」

與顯卡的差距,但是X的conf現在不在以後的版本中生成,可能需要手動創建。如果任何人有複製和粘貼控制檯代碼修復,這將是一個偉大的和更好的答案。

+0

在macOS中運行的AMD卡在連接到顯示器時具有相同的超時問題。 – user1139069