試試這個:從this stackoverflow answer採取
import java.util.Arrays;
public class Test {
public static void main(String [] args){
int [] arr = {7, 11, 1, 9, 10, 3, 5, 13, 9, 12};
int [][] res = combinations(5, arr);
int N = Arrays.stream(arr).reduce(1, (a, b) -> a * b);
int min = Integer.MAX_VALUE;
int [] opt = new int [5];
for (int [] i : res){
int k = (int) Math.abs(Math.pow(Arrays.stream(i).sum(), 2) - N/(Arrays.stream(i).reduce(1, (a, b) -> a * b)));
if(k < min){
min = k;
opt = i;
}
}
Arrays.sort(opt);
System.out.println("minimum difference is "+ min + " with the subset containing this elements " + Arrays.toString(opt));
}
// returns all k-sized subsets of a n-sized set
public static int[][] combinations(int k, int[] set) {
int c = (int) binomial(set.length, k);
int[][] res = new int[c][Math.max(0, k)];
int[] ind = k < 0 ? null : new int[k];
for (int i = 0; i < k; ++i) {
ind[i] = i;
}
for (int i = 0; i < c; ++i) {
for (int j = 0; j < k; ++j) {
res[i][j] = set[ind[j]];
}
int x = ind.length - 1;
boolean loop;
do {
loop = false;
ind[x] = ind[x] + 1;
if (ind[x] > set.length - (k - x)) {
--x;
loop = x >= 0;
} else {
for (int x1 = x + 1; x1 < ind.length; ++x1) {
ind[x1] = ind[x1 - 1] + 1;
}
}
} while (loop);
}
return res;
}
// returns n choose k;
// there are n choose k combinations without repetition and without observance of the sequence
//
private static long binomial(int n, int k) {
if (k < 0 || k > n) return 0;
if (k > n - k) {
k = n - k;
}
long c = 1;
for (int i = 1; i < k+1; ++i) {
c = c * (n - (k - i));
c = c/i;
}
return c;
}
}
代碼,也看看關於組合this維基百科的文章。
您遇到什麼問題? –
如何獲得所有可能的大小n/2的組合(這裏是一個示例https://stackoverflow.com/questions/2201113/combinatoric-n-choose-r-in-java-math)爲每個組合計算sqrSum和產品將所有結果放在一個集合中,然後在某個點上您將看到sqrtSum和產品作爲鄰居找到具有最小差異的對 – urag
@urag值得注意的是,需要指數時間 - 如果n甚至小到50 ,你會遇到問題。通常指數時間蠻力解決方案對於這些問題是顯而易見的,關鍵是找到解決問題的更明智的方法。 – Dukeling