1
我想實現一個依賴於模冪運算的算法。我找不到像u64
(僅適用於bigint)等原生類型的任何模冪運算構造,所以我想我會編碼一個標準modular exponentiation by repeated squaring method。如何才能要求對泛型類型的引用可以與泛型類型進行比較?
這就是我想出了:
fn powm(base: &u64, exponent: &u64, modulus: &u64) -> u64 {
if *modulus == 1u64 {
0
} else {
let mut result = 1;
let mut base = self % modulus;
let mut exp = *exponent;
while exp > 0 {
if exp % 2 == 1 {
result = (result * base) % modulus;
}
exp >>= 1;
base = (base * base) % modulus;
}
result
}
}
這工作得很好。現在,我想使這個函數是通用的,這樣它也可以用於除u64
以外的數字類型。這是我開始有點失落的地方。
我發現了num箱子,它具有指定基本數值操作的Num
特徵。分離出一個新的特點PowM
,創造了一堆特質界後,我結束了:
extern crate num;
use num::Num;
use std::ops::{ShrAssign,Rem};
pub trait PowM {
fn powm(&self, exponent: &Self, modulus: &Self) -> Self;
}
pub trait Two {
fn two() -> Self;
}
impl Two for u64 {
fn two() -> u64 { return 2u64 }
}
impl Two for usize {
fn two() -> usize { return 2usize }
}
impl<T> PowM for T
where T: Num + Two + ShrAssign<T> + Rem<T> + PartialOrd<T> {
fn powm(&self, exponent: &T, modulus: &T) -> T {
if modulus == T::one() {
T::zero()
} else {
let mut result = T::one();
let mut base = *self % *modulus;
let mut exp = *exponent;
while exp > T::zero() {
if exp % T::two() == T::one() {
result = (result * base) % *modulus;
}
exp >>= T::one();
base = (base * base) % *modulus;
}
result
}
}
}
唯一的抱怨編譯器爲在以下
error[E0277]: the trait bound `&T: std::cmp::PartialEq<T>` is not satisfied
|
30 | if modulus == T::one() {
| ^^ can't compare `&T` with `T`
|
= help: the trait `std::cmp::PartialEq<T>` is not implemented for `&T`
= help: consider adding a `where &T: std::cmp::PartialEq<T>` bound
我想添加特質界限,但最終追了很多關於我的壽命並不完全瞭解編譯器錯誤的,並最終堅持了以下內容:
impl<'a, T> PowM for T
where T: 'a + Num + Two + ShrAssign<T> + Rem<T> + PartialOrd<T>,
&'a T: PartialEq<T> {
fn powm(&self, exponent: &T, modulus: &T) -> T {
if modulus == T::one() {
[...]
仍然給人錯誤。我該如何解決?