這可能不會贏得任何效益獎,但你可以獲得列表解析的樣式點。
這就是我將如何解決這個問題。列出大小爲3的推拉窗口。
>>> nums = [1, 3, 5, 6, 7, 8, 9, 10, 15, 19, 20, 22, 23, 24, 26, 27, 28, 32, 33, 35, 37, 38, 39, 40, 41, 42, 43, 44, 47, 48]
>>> [nums[i:i+3] for i in xrange(len(nums))]
[[1, 3, 5], [3, 5, 6], [5, 6, 7], [6, 7, 8], [7, 8, 9], [8, 9, 10], [9, 10, 15], [10, 15, 19], [15, 19, 20], [19, 20, 22], [20, 22, 23], [22, 23, 24], [23, 24, 26], [24, 26, 27], [26, 27, 28], [27, 28, 32], [28, 32, 33], [32, 33, 35], [33, 35, 37], [35, 37, 38], [37, 38, 39], [38, 39, 40], [39, 40, 41], [40, 41, 42], [41, 42, 43], [42, 43, 44], [43, 44, 47], [44, 47, 48], [47, 48], [48]]
下一步,擺脫連續的項目,這是現在輕鬆容易。這個謂詞將巧妙地過濾出連續的項目。
>>> [nums[i] for i in xrange(len(nums)) if nums[i:i+3] != range(nums[i],nums[i]+3)]
[1, 3, 9, 10, 15, 19, 20, 23, 24, 27, 28, 32, 33, 35, 43, 44, 47, 48]
編輯:
埃裏克提出了一個很好的點,上述解決方案並不完全工作。如果你想要這個工作,那麼謂詞將需要一些增強。首先,我推導出這些方程。他們執行窗口操作。說服自己,他們是真正的:
a = [1,2,3,4,5]
i = 2
a[i-0:i+3] == range(a[i-0], a[i]+3) # left
a[i-1:i+2] == range(a[i-1], a[i]+2) # center
a[i-2:i+1] == range(a[i-2], a[i]+1) # right
然後你能果醬它在那裏橫着...
[a for i,a in enumerate(nums) if all(nums[i-j:i+k] != range(nums[i-j], nums[i]+k) for j,k in zip(xrange(0,3,1), xrange(3,0,-1)))]
但是,如果你不想得到出手,拔出謂語成功能:
consec_to_buddies = lambda i, xs: (
xs[i-0:i+3] == range(xs[i-0], xs[i]+3) or
xs[i-1:i+2] == range(xs[i-1], xs[i]+2) or
xs[i-2:i+1] == range(xs[i-2], xs[i]+1)
)
[a for i,a in enumerate(nums) if not consec_to_buddies(i, nums)]
再次,這是不是最有效的,因爲你會被計算爲每個項目的斷言,即使你已經知道你正在服用它出。你付出的代價優雅:)
你想如何處理長度大於3的連續序列?對於1,20,21,22,23,24,30,期望的輸出是多少? –
這是非常好的一點,因爲會有4或5個連續數字的實例。我想消除所有3個事件。 – Trapp
只是領先的數字或任何地方? – Anycorn