2013-04-05 52 views
11

我想做一個對數擬合。但我不斷收到一個運行時錯誤:Scipy curvefit RuntimeError:找不到最佳參數:函數調用次數達到maxfev = 1000

Optimal parameters not found: Number of calls to function has reached maxfev = 1000

我使用下面的腳本。任何人都可以告訴我我哪裏出錯了嗎?我使用Spyder,我仍然是初學者。

import math 
import matplotlib as mpl 
from scipy.optimize import curve_fit 
import numpy as np 

#data 
F1=[735.0,696.0,690.0,683.0,680.0,678.0,679.0,675.0,671.0,669.0,668.0,664.0,664.0] 
t1=[1,90000.0,178200.0,421200.0,505800.0,592200.0,768600.0,1036800.0,1371600.0,1630800.0,1715400.0,2345400.0,2409012.0] 

F1n=np.array(F1) 
t1n=np.array(t1) 

plt.plot(t1,F1,'ro',label="original data") 

# curvefit 
def func(t,a,b): 
    return a+b*np.log(t) 

t=np.linspace(0,3600*24*28,13) 

popt, pcov = curve_fit(func, t, F1n, maxfev=1000)  

plt.plot(t, func(t, *popt), label="Fitted Curve") 

plt.legend(loc='upper left') 
plt.show() 

回答

2

固定import語句後:

#import matplotlib as mpl 
import matplotlib.pyplot as plt 

你的代碼產生以下錯誤:

RuntimeWarning: divide by zero encountered in log 

改變:

#t=np.linspace(0,3600*24*28,13) 
t=np.linspace(1,3600*24*28,13) 

產生了以下的輸出:

enter image description here

8

你的原始數據是t1F1。因此curve_fit應作爲其第二個參數t1而不是t

popt, pcov = curve_fit(func, t1, F1, maxfev=1000) 

現在,一旦你獲得擬合參數,popt,你可以在點t評估func獲得擬合曲線:

t = np.linspace(1, 3600 * 24 * 28, 13) 
plt.plot(t, func(t, *popt), label="Fitted Curve") 

(我刪除零從t(每StuGrey的答案)到避免Warning: divide by zero encountered in log。)


import matplotlib.pyplot as plt 
import scipy.optimize as optimize 
import numpy as np 

# data 
F1 = np.array([ 
    735.0, 696.0, 690.0, 683.0, 680.0, 678.0, 679.0, 675.0, 671.0, 669.0, 668.0, 
    664.0, 664.0]) 
t1 = np.array([ 
    1, 90000.0, 178200.0, 421200.0, 505800.0, 592200.0, 768600.0, 1036800.0, 
    1371600.0, 1630800.0, 1715400.0, 2345400.0, 2409012.0]) 

plt.plot(t1, F1, 'ro', label="original data") 

# curvefit 

def func(t, a, b): 
    return a + b * np.log(t) 

popt, pcov = optimize.curve_fit(func, t1, F1, maxfev=1000) 
t = np.linspace(1, 3600 * 24 * 28, 13) 
plt.plot(t, func(t, *popt), label="Fitted Curve") 
plt.legend(loc='upper left') 
plt.show() 

enter image description here