0
我試圖使用分段迴歸進行預測,它給了我一個錯誤:「eval(expr,envir,enclos):object'U1.Sepal.Width'not found」中的錯誤。我究竟做錯了什麼?Error.segmented中的錯誤
下面是示例代碼:
library("segmented")
data("iris")
breaks <- list(Sepal.Width = quantile(iris$Sepal.Width, c(0.25, 0.5, 0.75)),
Petal.Width = quantile(iris$Petal.Width, c(0.25, 0.5, 0.75)))
fit.lm <- lm(Sepal.Length ~ Sepal.Width + Petal.Width, data = iris)
fit.segmented <- segmented(fit.lm, seg.Z = ~ Sepal.Width + Petal.Width,
psi = breaks, control = seg.control(it.max = 0))
summary(fit.segmented)
#
# Call:
# lm(formula = Sepal.Length ~ Sepal.Width + Petal.Width + U1.Sepal.Width +
# U2.Sepal.Width + U3.Sepal.Width + U1.Petal.Width + U2.Petal.Width +
# U3.Petal.Width, data = mfExt)
#
# Residuals:
# Min 1Q Median 3Q Max
# -1.25915 -0.25375 -0.02634 0.22621 1.25034
#
# Coefficients:
# Estimate Std. Error t value Pr(>|t|)
# (Intercept) 3.3287 0.8546 3.895 0.000151 ***
# Sepal.Width 0.4309 0.3066 1.405 0.162120
# Petal.Width 0.2362 1.0925 0.216 0.829120
# U1.Sepal.Width 0.4492 0.8220 0.546 0.585606
# U2.Sepal.Width -0.7730 0.9027 -0.856 0.393306
# U3.Sepal.Width 0.8078 0.6080 1.329 0.186139
# U1.Petal.Width 1.1081 1.2094 0.916 0.361099
# U2.Petal.Width -0.4990 0.3862 -1.292 0.198400
# U3.Petal.Width -0.4617 0.4824 -0.957 0.340195
# ---
# Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
#
# Residual standard error: 0.4381 on 141 degrees of freedom
# Multiple R-squared: 0.7351, Adjusted R-squared: 0.72
# F-statistic: 48.9 on 8 and 141 DF, p-value: < 2.2e-16
predict(fit.segmented, data.frame("Sepal.Width" = 3, "Petal.Width" = 1.8), se.fit = TRUE)
#Error in eval(expr, envir, enclos) : object 'U1.Sepal.Width' not found
不幸的是,你的代碼所提供的回報不同的擬合值(相比那些由'fit.segmented $ fitted'返回)。 – user4968068