這應該是準確的(填寫一份struct tm
的切下來的模仿,我year
使用,而不是1900 CE時代共同的時代):
struct xtm
{
unsigned int year, mon, day, hour, min, sec;
};
#define YEAR_TO_DAYS(y) ((y)*365 + (y)/4 - (y)/100 + (y)/400)
void untime(unsigned long unixtime, struct xtm *tm)
{
/* First take out the hour/minutes/seconds - this part is easy. */
tm->sec = unixtime % 60;
unixtime /= 60;
tm->min = unixtime % 60;
unixtime /= 60;
tm->hour = unixtime % 24;
unixtime /= 24;
/* unixtime is now days since 01/01/1970 UTC
* Rebaseline to the Common Era */
unixtime += 719499;
/* Roll forward looking for the year. This could be done more efficiently
* but this will do. We have to start at 1969 because the year we calculate here
* runs from March - so January and February 1970 will come out as 1969 here.
*/
for (tm->year = 1969; unixtime > YEAR_TO_DAYS(tm->year + 1) + 30; tm->year++)
;
/* OK we have our "year", so subtract off the days accounted for by full years. */
unixtime -= YEAR_TO_DAYS(tm->year);
/* unixtime is now number of days we are into the year (remembering that March 1
* is the first day of the "year" still). */
/* Roll forward looking for the month. 1 = March through to 12 = February. */
for (tm->mon = 1; tm->mon < 12 && unixtime > 367*(tm->mon+1)/12; tm->mon++)
;
/* Subtract off the days accounted for by full months */
unixtime -= 367*tm->mon/12;
/* unixtime is now number of days we are into the month */
/* Adjust the month/year so that 1 = January, and years start where we
* usually expect them to. */
tm->mon += 2;
if (tm->mon > 12)
{
tm->mon -= 12;
tm->year++;
}
tm->day = unixtime;
}
我對所有的幻數道歉。 367 *月/ 12是生成日曆的30/31天順序的巧妙方法。計算的工作時間從3月開始直到最後的修正,這使得事情變得簡單,因爲閏日落在「年」的末尾。
來源
2009-08-14 01:44:11
caf
'time.h'中聲明瞭'gmtime'? – caf 2009-08-13 23:08:00