1
我試圖減少數據中每個因子變量的級數。我想先減少層級做2個操作的數量:減少每個因子dplyr方法的級別數
- 如果等級的數量比截止更大然後更換頻率較低的水平上一個新臺階,直到水平的數量已經達到了cut-關閉
- 一個因素沒有足夠的觀測替換水平提高到新的水平
我寫的正常工作的功能,但我不喜歡的代碼。如果剩餘水平沒有足夠的觀測值,這並不重要。我更喜歡dplyr方法。
ReplaceFactor <- function(data, max_levels, min_values_factor){
# First make sure that not to many levels are in a factor
for(i in colnames(data)){
if(class(data[[i]]) == "factor"){
if(length(levels(data[[i]])) > max_levels){
levels_keep <- names(sort(table(data[[i]]), decreasing = T))[1 : (max_levels - 1)]
data[!get(i) %in% levels_keep, (i) := "REMAIN"]
data[[i]] <- as.factor(as.character(data[[i]]))
}
}
}
# Now make sure that in each level has enough observations
for(i in colnames(data)){
if(class(data[[i]]) == "factor"){
if(min(table(data[[i]])) < min_values_factor){
levels_replace <- table(data[[i]])[table(data[[i]]) < min_values_factor]
data[get(i) %in% names(levels_replace), (i) := "REMAIN"]
data[[i]] <- as.factor(as.character(data[[i]]))
}
}
}
return(data)
}
df <- data.frame(A = c("A","A","B","B","C","C","C","C","C"),
B = 1:9,
C = c("A","A","B","B","C","C","C","D","D"),
D = c("A","B","E", "E", "E","E","E", "E", "E"))
str(df)
'data.frame': 9 obs. of 4 variables:
$ A: Factor w/ 3 levels "A","B","C": 1 1 2 2 3 3 3 3 3
$ B: int 1 2 3 4 5 6 7 8 9
$ C: Factor w/ 4 levels "A","B","C","D": 1 1 2 2 3 3 3 4 4
$ D: Factor w/ 3 levels "A","B","E": 1 2 3 3 3 3 3 3 3
dt2 <- ReplaceFactor(data = data.table(df),
max_levels = 3,
min_values_factor = 2)
str(dt2)
Classes ‘data.table’ and 'data.frame': 9 obs. of 4 variables:
$ A: Factor w/ 3 levels "A","B","C": 1 1 2 2 3 3 3 3 3
$ B: int 1 2 3 4 5 6 7 8 9
$ C: Factor w/ 3 levels "A","C","REMAIN": 1 1 3 3 2 2 2 3 3
$ D: Factor w/ 2 levels "E","REMAIN": 2 2 1 1 1 1 1 1 1
- attr(*, ".internal.selfref")=<externalptr>
dt2
A B C D
1: A 1 A REMAIN
2: A 2 A REMAIN
3: B 3 REMAIN E
4: B 4 REMAIN E
5: C 5 C E
6: C 6 C E
7: C 7 C E
8: C 8 REMAIN E
9: C 9 REMAIN E
我建議你看看'forcats'軟件包,它對這類任務有很好的功能:例如http://forcats.tidyverse.org/reference/ –
'fct_lump'可能會有幫助 –