2017-10-18 329 views
0

由於原始文章不清楚,所以將其完全改寫。我想要做的是逐行解析一些數據並創建一個字典。我想有更好的方法來組織這些數據。我試圖去解決這個問題的原始方式並沒有解釋幾件事情,所以我提出了這個問題。我通過逐行循環服務策略輸出來將接口,策略名稱的數據放在一起,然後拉出隊列,丟棄和無緩衝區丟棄。我遇到的問題是它沒有考慮額外的策略,因此數據的原始傳遞被覆蓋。從多個數據源在python中創建嵌套字典

服務策略輸出:

GigabitEthernet11/1 

Service-policy output: Gi11_1 

Counters last updated 7191104 seconds ago 

Class-map: class-default (match-any) 
    0 packets, 0 bytes 
    30 second offered rate 0000 bps, drop rate 0000 bps 
    Match: any 
    Queueing 
    queue limit 33025 packets 
    (queue depth/total drops/no-buffer drops) 0/0/0 
    (pkts output/bytes output) 0/0 
    shape (average) cir 500000000, bc 2000000, be 2000000 
    target shape rate 500000000 

    Service-policy : child 

    Counters last updated 7191104 seconds ago 

    Class-map: class-default (match-any) 
     0 packets, 0 bytes 
     30 second offered rate 0000 bps, drop rate 0000 bps 
     Match: any 
     Queueing 
     queue limit 33025 packets 
     (queue depth/total drops/no-buffer drops) 0/0/0 
     (pkts output/bytes output) 0/0 
     bandwidth remaining ratio 100 

for ints, int_strings in zip(int_names, int_output): 
    counts.setdefault(ints, {}) 

    for line in int_strings.splitlines(): 
     matchpolicy = re.search(r'(Service-policy.*)', line) 
     matchdrops = re.findall(r'total drops.*', line) 
     if matchpolicy: 
      spolicies = matchpolicy.group(0) 
      counts[ints]['Policy'] = spolicies 
     if matchdrops: 
      regx = re.search(r'\s(\d+)\/(\d+)\/(\d+)', line) 
      counts[ints]['queue'] = int(regx.group(1)) 
      counts[ints]['drops'] = int(regx.group(2)) 
      counts[ints]['no-buffer'] = int(regx.group(3)) 

return counts 

我試圖創建一個額外的深度級別的字典,但我對數得到一個關鍵的錯誤[整數] [spolicies]線。從我讀的內容來看,我認爲這是嵌套字典的工作方式,但我想我誤解了。

for ints, int_strings in zip(int_names, int_output): 
    counts.setdefault(ints, {}) 

    for line in int_strings.splitlines(): 
     matchpolicy = re.search(r'(Service-policy.*)', line) 
     matchdrops = re.findall(r'total drops.*', line) 
     if matchpolicy: 
      spolicies = matchpolicy.group(0) 
      counts[ints][spolicies] 
     if matchdrops: 
      regx = re.search(r'\s(\d+)\/(\d+)\/(\d+)', line) 
      counts[ints][spolicies]['queue'] = int(regx.group(1)) 
      counts[ints][spolicies]['drops'] = int(regx.group(2)) 
      counts[ints][spolicies]['no-buffer'] = int(regx.group(3)) 

return counts 

無論哪種方式,我猜想有可能是一個更好的方式來組織這個數據,所以我可以以後通過它更容易。有任何想法嗎?

+1

[「有人可以幫助我?」是不是一個有效的SO問題](https://meta.stackoverflow.com/questions/284236/why-is-can-someone-help-me-not-an-actual-question)。這通常表明,你需要的是半個小時的時間與當地的導師,或通過一個教程,而不是堆棧溢出。 – Prune

回答

0
labels = ["depth", "drops", "buffer_drops"] 
values = ['0', '14996', '0', '0', '2100', '0'] 
keys=['Gi1','Gi2'] 

values_grouped_by_3 = list(zip(*[iter(values)]*3)) 
data = dict(zip(keys,[dict(zip(labels,vals)) for vals in values_grouped_by_3])) 

,如果您想了解更多的教程和實際的幫助,那麼請首先作出努力,併發布你的努力和你預期,你的輸出是

+0

道歉,我提出的所有代碼都沒有任何意義,所以我不想用它來覆蓋帖子。在這一刻我改變了我的代碼很多次,我甚至都不知道我從哪裏開始。我有以下幾點:#for interface_strings,header_strings中的header_strings: #intf [header_strings] [interface_strings] .append(outerrs)(我意識到根本沒有正確發佈) – pegruder