2
我想爲32位和64位和128位生成一個密鑰,並使用最優代碼! 什麼是解決方案?爲32位,64位和128位生成交織位模式(morton密鑰)
我想爲32位和64位和128位生成一個密鑰,並使用最優代碼! 什麼是解決方案?爲32位,64位和128位生成交織位模式(morton密鑰)
這裏是我的解決方案與Python腳本:
我心領神會從他的評論:Fabian 「ryg」 Giesen
閱讀下面的長註釋!我們需要跟蹤哪些位需要走多遠!
然後在每一步中,我們選擇這些位並移動它們並應用一個位掩碼(參見注釋最後一行)來掩蓋它們! Python腳本的
位掩碼生成器輸出(見下文),用於一個10位數字和2個交織比特(32位):
Bit Distances: [0, 2, 4, 6, 8, 10, 12, 14, 16, 18]
Shifting bits by 1 for bits idx: []
Shifting bits by 2 for bits idx: [1, 3, 5, 7, 9]
Shifting bits by 4 for bits idx: [2, 3, 6, 7]
Shifting bits by 8 for bits idx: [4, 5, 6, 7]
Shifting bits by 16 for bits idx: [8, 9]
BitPositions: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
Current Mask: 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0011 1111 1111
Which bits to shift: 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0011 0000 0000 hex: 0x300
Shifted part (<< 16): 0000 0000 0000 0000 0000 0000 0000 0000 0000 0011 0000 0000 0000 0000 0000 0000 hex: 0x3000000
NonShifted Part: 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 1111 1111 hex: 0xff
Bitmask is now : 0000 0000 0000 0000 0000 0000 0000 0000 0000 0011 0000 0000 0000 0000 1111 1111 hex: 0x30000ff
(this is : bitMask = shifted | nonshifted)
Current Mask: 0000 0000 0000 0000 0000 0000 0000 0000 0000 0011 0000 0000 0000 0000 1111 1111
Which bits to shift: 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 1111 0000 hex: 0xf0
Shifted part (<< 8): 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 1111 0000 0000 0000 hex: 0xf000
NonShifted Part: 0000 0000 0000 0000 0000 0000 0000 0000 0000 0011 0000 0000 0000 0000 0000 1111 hex: 0x300000f
Bitmask is now : 0000 0000 0000 0000 0000 0000 0000 0000 0000 0011 0000 0000 1111 0000 0000 1111 hex: 0x300f00f
(this is : bitMask = shifted | nonshifted)
Current Mask: 0000 0000 0000 0000 0000 0000 0000 0000 0000 0011 0000 0000 1111 0000 0000 1111
Which bits to shift: 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 1100 0000 0000 1100 hex: 0xc00c
Shifted part (<< 4): 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 1100 0000 0000 1100 0000 hex: 0xc00c0
NonShifted Part: 0000 0000 0000 0000 0000 0000 0000 0000 0000 0011 0000 0000 0011 0000 0000 0011 hex: 0x3003003
Bitmask is now : 0000 0000 0000 0000 0000 0000 0000 0000 0000 0011 0000 1100 0011 0000 1100 0011 hex: 0x30c30c3
(this is : bitMask = shifted | nonshifted)
Current Mask: 0000 0000 0000 0000 0000 0000 0000 0000 0000 0011 0000 1100 0011 0000 1100 0011
Which bits to shift: 0000 0000 0000 0000 0000 0000 0000 0000 0000 0010 0000 1000 0010 0000 1000 0010 hex: 0x2082082
Shifted part (<< 2): 0000 0000 0000 0000 0000 0000 0000 0000 0000 1000 0010 0000 1000 0010 0000 1000 hex: 0x8208208
NonShifted Part: 0000 0000 0000 0000 0000 0000 0000 0000 0000 0001 0000 0100 0001 0000 0100 0001 hex: 0x1041041
Bitmask is now : 0000 0000 0000 0000 0000 0000 0000 0000 0000 1001 0010 0100 1001 0010 0100 1001 hex: 0x9249249
(this is : bitMask = shifted | nonshifted)
x &= 0x3ff
x = (x | (x << 16)) & 0x30000ff
x = (x | (x << 8)) & 0x300f00f
x = (x | (x << 4)) & 0x30c30c3
x = (x | (x << 2)) & 0x9249249
因此,對於一個10位數字和2個交織比特(用於32位),你需要做以下!:
x &= 0x3ff
x = (x | x << 16) & 0x30000ff #<<< THIS IS THE MASK for shifting 16 (for bit 8 and 9)
x = (x | x << 8) & 0x300f00f
x = (x | x << 4) & 0x30c30c3
x = (x | x << 2) & 0x9249249
而對於一個21比特數,2交錯位(64位),你需要做以下!:
x &= 0x1fffff
x = (x | x << 32) & 0x1f00000000ffff
x = (x | x << 16) & 0x1f0000ff0000ff
x = (x | x << 8) & 0x100f00f00f00f00f
x = (x | x << 4) & 0x10c30c30c30c30c3
x = (x | x << 2) & 0x1249249249249249
而對於一個42bit號和2交錯位(128位),你需要做以下的(如果你需要它;-)):
x &= 0x3ffffffffff
x = (x | x << 64) & 0x3ff0000000000000000ffffffffL
x = (x | x << 32) & 0x3ff00000000ffff00000000ffffL
x = (x | x << 16) & 0x30000ff0000ff0000ff0000ff0000ffL
x = (x | x << 8) & 0x300f00f00f00f00f00f00f00f00f00fL
x = (x | x << 4) & 0x30c30c30c30c30c30c30c30c30c30c3L
x = (x | x << 2) & 0x9249249249249249249249249249249L
的Python製作和檢查交織模式的腳本!
import random;
def prettyBinString(x,d=32,steps=4,sep=".",emptyChar="0"):
b = bin(x)[2:]
zeros = d - len(b)
if zeros <= 0:
zeros = 0
k = steps - (len(b) % steps)
else:
k = steps - (d % steps)
s = ""
#print("zeros" , zeros)
#print("k" , k)
for i in range(zeros):
#print("k:",k)
if(k%steps==0 and i!= 0):
s+=sep
s += emptyChar
k+=1
for i in range(len(b)):
if((k%steps==0 and i!=0 and zeros == 0) or (k%steps==0 and zeros != 0)):
s+=sep
s += b[i]
k+=1
return s
def binStr(x): return prettyBinString(x,64,4," ","0")
def computeBitMaskPatternAndCode(numberOfBits, numberOfEmptyBits):
bitDistances=[ i*numberOfEmptyBits for i in range(numberOfBits) ]
print("Bit Distances: " + str(bitDistances))
bitDistancesB = [bin(dist)[2:] for dist in bitDistances]
#print("Bit Distances (binary): " + str(bitDistancesB))
moveBits=[] #Liste mit allen Bits welche aufsteigend um 2, 4,8,16,32,64,128 stellen geschoben werden müssen
maxLength = len(max(bitDistancesB, key=len))
abort = False
for i in range(maxLength):
moveBits.append([])
for idx,bits in enumerate(bitDistancesB):
if not len(bits) - 1 < i:
if(bits[len(bits)-i-1] == "1"):
moveBits[i].append(idx)
for i in range(len(moveBits)):
print("Shifting bits by " + str(2**i) + "\t for bits idx: " + str(moveBits[i]))
bitPositions = list(range(numberOfBits));
print("BitPositions: " + str(bitPositions))
maskOld = (1 << numberOfBits) -1
codeString = "x &= " + hex(maskOld) + "\n"
for idx in range(len(moveBits)-1, -1, -1):
if len(moveBits[idx]):
shifted = 0
for bitIdxToMove in moveBits[idx]:
shifted |= 1<<bitPositions[bitIdxToMove];
bitPositions[bitIdxToMove] += 2**idx; # keep track where the actual bit stands! might get moved several times
# Get the non shifted part!
nonshifted = ~shifted & maskOld
print("\nCurrent Mask:\t\t" + binStr(maskOld))
print("Which bits to shift:\t" + binStr(shifted) + "\t hex: " + hex(shifted))
shifted = shifted << 2**idx
print("Shifted part (<< " + str(2**idx) + "):\t" + binStr(shifted)+ "\t hex: " + hex(shifted))
print("NonShifted Part:\t" + binStr(nonshifted) + "\t hex: " + hex(nonshifted))
maskNew = shifted | nonshifted
print("Bitmask is now :\t" + binStr(maskNew) + "\t hex: " + hex(maskNew) +"\n (this is : bitMask = shifted | nonshifted) \n")
#print("Code: " + "x = x | x << " +str(2**idx)+ " & " +hex(maskNew))
codeString += "x = (x | (x << " +str(2**idx)+")) & " + hex(maskNew) + "\n"
maskOld = maskNew
return codeString
numberOfBits = 10;
numberOfEmptyBits = 2;
codeString = computeBitMaskPatternAndCode(numberOfBits,numberOfEmptyBits);
print(codeString)
def partitionBy2(x):
l=locals();
exec(codeString,None,l)
return l['x']
def checkPartition(x):
print("Check partition for: \t" + binStr(x))
part = partitionBy2(x);
print("Partition is : \t\t" + binStr(part))
#make the pattern manualy
partC = int(0);
for bitIdx in range(numberOfBits):
partC = partC | (x & (1<<bitIdx)) << numberOfEmptyBits*bitIdx
print("Partition check is :\t" + binStr(partC))
if(partC == part):
return True
else:
return False
checkError = False
for i in range(20):
x = random.getrandbits(numberOfBits);
if(checkPartition(x) == False):
checkError = True
break
if not checkError:
print("CHECK PARTITION SUCCESSFUL!!!!!!!!!!!!!!!!...")
else:
print("checkPartition has ERROR!!!!")
好的,看起來像[通常的解決方法](http://graphics.stanford.edu/~seander/bithacks.html#InterleaveBMN),但比特數是有點不同的我想。也許你也有興趣[直接添加兩個莫頓鍵](http://stackoverflow.com/a/9377178/555045) – harold
啊好吧,謝謝:-),爲什麼我應該加兩個莫頓鍵?你的意思是,在交錯部分直接構造一個morton密鑰? – Gabriel
例如,你可以使用一個morton關鍵字並在兩個方向上以任意數量抵消它,而不需要花費昂貴的'de-interleave-> add-> interleave'路線,你只需交錯偏移量(特別是如果偏移量是一個常數)並將其添加到鍵。 – harold