2016-11-04 83 views
0

你好,我是很新的Python語言,我收到以下錯誤,運行test.py文件時Python對象調用錯誤

Traceback (most recent call last): 

File "D:/Py Charm projects/Example/test.py", line 3, in <module> 

repository = Repository(Config) 

File "D:\Py Charm projects\Example\repository.py", line 29, in __init__ 

assert isinstance(config, Config) 
AssertionError 

test.py

from repository import Repository 
from configuration import Config 
repository = Repository(Config) 
dataset, labels = repository.get_dataset_and_labels() 

庫.py

import json 
import re 
import time 
from random import random 
from glob import glob 
from os.path import basename, dirname 
from os.path import sep as path_sep 
from os.path import join as path_join 
from datetime import datetime 

from numpy import inf, array 
from pandas import DataFrame 
from configuration import Config 

__author__ = 'luis' 
methods = [] 


def method_list(method): 
if method not in methods: 
    methods.append(method) 

return method 


class Repository(object): 
def __init__(self, config): 
    self.expert_locations = {} 
    assert isinstance(config, Config) 
    self.config = config 
    self.base_path = config.base_path 
    self.config_path = config.config_path 
    self.sample_path = config.path_user_sample 
    self.expert_data_path = config.expert_data_path 
    self.users = [] 
    self.access_points = {} 
    self.locations = {} 
    self.goal_types = {} 
    self.goals = {} 
    self.goals_timetable = {} 
    self.samples = {} 
    self.expert_samples = {} 
    self.expert_validation_samples = {} 
    self.fingerprints = {} 
    for m in methods: 
     m(self) 

@method_list 
def load_users(self): 
    user_file = "%s/users.json" % self.config_path 
    with open(user_file) as fd: 
     jf = json.load(fd) 

    for u in jf: 
     self.users.append(u['user_id']) 

@method_list 
def load_locations(self): 
    user_file = "%s/goallist.json" % self.config_path 
    with open(user_file) as fd: 
     jf = json.load(fd) 

    for loc in jf: 
     self.locations.setdefault((loc['latitude'], loc['longitude']), set()) 

@method_list 
def load_goals(self): 
    file_list = glob('%s/Goals/Goals*/*.json' % self.config_path) 
    for f in file_list: 
     goal_type = re.match(".*_([a-z]*)", dirname(f)).group(1) 
     time_name = basename(f).split(".")[0] 
     ts = time.mktime(time.strptime(time_name, "%Y-%m-%d_%H-%M-%S")) 
     with open(f) as fd: 
      jf = json.load(fd) 

     for loc in jf: 
      priority = self.goals.setdefault(goal_type, {}).setdefault(ts, {}) 
      priority[(loc['location']['latitude'], loc['location']['longitude'])] = loc['priority'] 

    self.goal_types = dict([x[::-1] for x in enumerate(self.goals)]) 

@method_list 
def load_expert_data(self): 
    file_list = glob("%s/%s" % (self.expert_data_path, self.config.expert_data_glob_pattern)) 
    for f in file_list: 
     user = re.match(".*StampRally_([a-z]*)/", dirname(f)).group(1) 
     time_name = basename(f).split(".")[0] 
     ts = time.mktime(time.strptime(time_name, "%Y-%m-%d_%H-%M-%S")) 
     with open(f) as fd: 
      jf = json.load(fd) 

     for fingerprint in jf: 
      loc = (fingerprint['location']['latitude'], fingerprint['location']['longitude']) 
      for mac, v in fingerprint['fingerprint']['wifi'].items(): 
       # self.access_points.setdefault(mac, set()).add(loc) 
       self.expert_locations.setdefault(loc, set()).add(mac) 
       self.expert_samples.setdefault(ts, {}).setdefault(user, {}).setdefault(loc, []).append(
        {'level': v["level"], 'mac': mac}) 

@method_list 
def load_expert_data_test(self): 
    file_list = glob("%s/%s" % (self.expert_data_path, self.config.expert_data_test_glob_pattern)) 
    for f in file_list: 
     user = re.match(".*StampRally_([a-z]*)/", dirname(f)).group(1) 
     time_name = basename(f).split(".")[0] 
     ts = time.mktime(time.strptime(time_name, "%Y-%m-%d_%H-%M-%S")) 
     with open(f) as fd: 
      jf = json.load(fd) 

     for fingerprint in jf: 
      loc = (fingerprint['location']['latitude'], fingerprint['location']['longitude']) 
      for mac, v in fingerprint['fingerprint'].items(): 
       # self.access_points.setdefault(mac, set()).add(loc) 
       self.expert_locations.setdefault(loc, set()).add(mac) 
       self.expert_validation_samples.setdefault(ts, {}).setdefault(user, {}).setdefault(loc, []).append(
        {'level': v["level"], 'mac': mac}) 

@method_list 
def load_goals_timetable(self): 
    file_list = glob('%s/Goals/Users/*.json' % self.config_path) 
    for f in file_list: 
     time_name = basename(f).split(".")[0] 
     ts = time.mktime(time.strptime(time_name, "%Y-%m-%d_%H-%M-%S")) 
     with open(f) as fd: 
      jf = json.load(fd) 

     try: 
      goal_type = jf.values()[0] 
     except IndexError: 
      continue 

     self.goals_timetable.setdefault(ts, []).append(self.goal_types[goal_type]) 

@method_list 
def load_samples(self): 
    file_list = glob('%s/StampRally_*/%s/*.json' % (self.config.data_set_path, self.sample_path)) 
    for f in file_list: 
     user = re.match(".*StampRally_([em][0-9])/", dirname(f)).group(1) 
     time_name = basename(f).split(".")[0] 
     ts = time.mktime(time.strptime(time_name, "%Y-%m-%d_%H-%M-%S")) 
     with open(f) as fd: 
      jf = json.load(fd) 

     for fingerprint in jf: 
      loc = (fingerprint['location']['latitude'], fingerprint['location']['longitude']) 
      for mac, v in fingerprint['fingerprint']['wifi'].items(): 
       self.access_points.setdefault(mac, set()).add(loc) 
       self.locations[loc].add(mac) 
       self.samples.setdefault(ts, {}).setdefault(user, {}).setdefault(loc, []).append(
        {'level': v["level"], 'mac': mac}) 

def iter_samples(self, time_filter=None, user_filter=None, loc_filter=None): 
    time_filter = time_filter and time_filter or (0., inf) 
    user_filter = user_filter and re.compile(user_filter) or re.compile(".*") 
    for ts, users in filter(lambda x: time_filter[0] <= x[0] <= time_filter[1], self.samples.items()): 
     for u, locations in filter(lambda x: user_filter.search(x[0]), users.items()): 
      for loc, fingerprints in filter(lambda x: not loc_filter and True or loc_filter == x[0], 
              locations.items()): 
       for fingerprint in fingerprints: 
        mac = fingerprint['mac'] 
        value = fingerprint['level'] 
        yield [ts, u, loc, mac, value] 

def iter_fingerprints(self, time_filter=None, user_filter=None, loc_filter=None, group_filter=None, src='samples'): 
    time_filter = time_filter and time_filter or (0., inf) 
    user_filter = user_filter and re.compile(user_filter) or re.compile(".*") 
    src = getattr(self, src) 
    for ts, users in src.items(): 
     if not (time_filter[0] <= ts <= time_filter[1]): 
      continue 

     for u, locations in users.items(): 
      if not user_filter.search(u): 
       continue 

      for loc, fingerprints in locations.items(): 
       if loc_filter and loc_filter != loc: 
        continue 

       if group_filter: 
        try: 
         fps = [fp for fp in fingerprints if fp['mac'] in group_filter[loc]] 
        except TypeError: 
         fps = [fp for fp in fingerprints if fp['mac'] in group_filter] 
        except KeyError: 
         fps = fingerprints 

        yield [ts, u, loc, fps] 
        continue 

       yield [ts, u, loc, fingerprints] 

def get_dataset_and_labels(self, columns=None, **kwargs): 
    df = [] 
    labels = [] 
    for ts, usr, loc, fingerprint in self.iter_fingerprints(**kwargs): 
     fp = dict([(m['mac'], m['level']) for m in fingerprint]) 
     df.append(fp) 
     labels.append(loc) 

    return DataFrame(df, columns=columns), array(labels) 

def create_time_series(self, time_filter=None, user_filter=None, sample_time=70): 
    time_filter = time_filter and time_filter or (0., inf) 
    user_filter = user_filter and re.compile(user_filter) or re.compile(".*") 
    time_series = [] 
    for ts, users in filter(lambda x: time_filter[0] <= x[0] <= time_filter[1], self.samples.items()): 
     lts = ts 
     for u, locations in filter(lambda x: user_filter.search(x[0]), users.items()): 
      for loc, fingerprints in locations.items(): 
       for fingerprint in fingerprints: 
        mac = fingerprint['mac'] 
        lts += random() 
        time_series.append([lts, mac]) 

      lts += sample_time 

    return time_series 

@method_list 
def update_week_specs(self): 
    week_stats = {} 
    for ts in self.samples: 
     date = datetime.fromtimestamp(ts) 
     week = date.strftime("%W") 
     week_stats.setdefault(week, []).append(ts) 

    self.config.week_specs = dict([("W%s" % w, (min(v), max(v))) for w, v in week_stats.items()]) 
    self.config.week_names = sorted(self.config.week_specs.keys(), key=lambda x: self.config.week_specs[x][0]) 

configuration.py

from os.path import sep as path_sep 
from os.path import join as path_join 


class Config(object): 
base_path = "." 
date_format = "%Y-%m-%d_%H-%M-%S" 
recording_start = 1390202100.0 
stages = [] 
var_fill = -200. 
knn_var_fill = -90. 
week_specs = {"W03": (1390202100.6, 1390589153.57), 
       "W04": (1390806000.32, 1391193208.91), 
       "W05": (1391410800.65, 1391797033.75), 
       "W06": (1392015600.01, 1392398212.78)} 
week_names = sorted(week_specs.keys()) 
week_for_evaluation = week_names 
path_user_sample=path_join("Uploads", "TrainData") 
expert_data_glob_pattern = path_join("StampRally_*", "Uploads", "TrainData",  "*.json") 
expert_data_test_glob_pattern = path_join("StampRally_*", "ValidationData", "*.json") 
k = 50 

@property 
def data_set_path(self): 
    return path_join(self.base_path, "SCSUT2014v1", "EXP201312") 

@property 
def expert_data_path(self): 
    return path_join(self.base_path, "SCSUT2014v1", "TESTDATA") 

@property 
def config_path(self): 
    return path_join(self.data_set_path, "StampRally") 

@property 
def results_path(self): 
    return path_join(self.base_path, "results") 

@property 
def rules_path(self): 
    return path_join(self.results_path, 'rules') 

@property 
def unified_time_series_path(self): 
    return path_join(self.results_path, 'timeseries') 

@property 
def titarl_configs_path(self): 
    return path_join(self.base_path, 'titarl_cfg') 

@property 
def rule_learning_template(self): 
    return path_join(self.base_path, "learning_config_e0.xml") 

@property 
def learn_all_file(self): 
    return path_join(self.base_path, "learn_all.bat") 

@property 
def log_path(self): 
    return path_join(self.base_path, "logs") 

@property 
def trees_path(self): 
    return path_join(self.results_path, "trees") 


config = Config() 

paths = [] 
for attrib in dir(config): 
    if "_path" in attrib: 
    paths.append(attrib) 

for path in [config.titarl_configs_path, config.unified_time_series_path, config.rules_path, config.trees_path]: 
paths.append("%s%squarterly" % (path, path_sep)) 

config.paths = paths 

請幫助我,我不知道是什麼錯誤是,我已經在谷歌搜索一樣好,但沒有得到任何解決這個錯誤,什麼樣的錯誤這是我無法理解,所以請幫助我卡在這裏,因爲我對Python語言很新。

回答

2

在:

repository = Repository(Config) 

你傳遞的Config類本身,而不是一個實例類的

修改成:

config = Config() 
# ... set up config here ... 
repository = Repository(config) 
+0

在哪個文件做我有編輯? –

0

在你test.py文件試圖改變這兩個行代碼:

from configuration import Config 
repository = Repository(Config) 

這樣的:

from configuration import config 
repository = Repository(config) 
+0

我已經完成了,但給了我同樣的錯誤 –

+0

@AnasReza,我已經在我的本地計算機上重新創建了您的項目的這一部分,並且在此修復程序之後代碼不會拋出AssertionError。也許還有其他的例外?你能提供一個輸出嗎? – anatolii

+0

回溯(最近最後調用): 文件 「d:/ PY魅力項目/實施例/ test.py」,第3行,在 庫=庫(配置) 文件「d:\ PY魅力項目\ Example#repository.py「,第46行,在__init__中 m(self) 文件」D:\ Py Charm projects \ Example \ repository.py「,第86行,在load_expert_data中 user = re.match(」。* StampRally_ ([az] *)/「,dirname(f))。group(1) AttributeError:'NoneType'對象沒有屬性'group' –

相關問題