3
這是我們從老師那得到的任務。我們應該用辛普森規則做了數值積分的功能f(x) = x*cos(third_root(x))
Python類型錯誤:不支持的操作數類型爲:'NoneType'和'float'
但我們不允許使用內置的cos
功能或使用x**(1.0/3.0)
找到第三根。
我得到的錯誤:
Traceback (most recent call last):
File "path", line 104, in <module>
print simpson(f, 1.0, 50.0, 10)
File "path", line 91, in simpson
I += 2 * f(x) + (4.0 * f(x + h))
File "path", line 101, in f
return x*final_cos(final_3root(x))
File "path", line 72, in final_cos
x = float_mod(x, 2 * pi)
File "path", line 42, in float_mod
k = int(x/a)
TypeError: unsupported operand type(s) for /: 'NoneType' and 'float'
Process finished with exit code 1
這裏是我的代碼:
import math
def final_3root(a):
q, m = math.frexp(a)
if 0.5 > q or q > 1.0:
raise ValueError('Math domain error')
x = 0.8968521468804229452995486
factor_1 = 0.6299605249474365823836053
factor_2 = 0.7937005259840997373758528
q_croot = (q/(x * x) + 2.0 * x)/3.0
q_croot = (q/(q_croot * q_croot) + 2.0 * q_croot)/3.0
q_croot = (q/(q_croot * q_croot) + 2.0 * q_croot)/3.0
q_croot = (q/(q_croot * q_croot) + 2.0 * q_croot)/3.0
if m % 3.0 == 0.0:
m /= 3
answer = math.ldexp(q_croot, m)
elif m % 3 == 1:
m += 2
m /= 3
answer = factor_1 * math.ldexp(q_croot, m)
elif m % 3 == 2:
m += 1
m /= 3
answer = factor_2 * math.ldexp(q_croot, m)
fasit = a ** (1.0/3.0)
#----------------------------------------------
def float_mod(x, a):
k = int(x/a)
if (x * a) < 0:
k -= 1
return x - float(k) * a
def ratio_based_cosinus(x):
epsilon = 1.0e-16
previous_Value = 1
return_Value = 1
n = -1
while True:
n += 1
ratio = (-x * x)/(((2 * n) + 1) * ((2 * n) + 2))
previous_Value *= ratio
return_Value += previous_Value
if abs(previous_Value) < epsilon:
break
return return_Value
def final_cos(x):
if isinstance(x, int):
x += 0.0
pi = 3.1415926
x = float_mod(x, 2 * pi)
if x > pi:
return ratio_based_cosinus(-x)
else:
return ratio_based_cosinus(x)
#----------------------------------------------
def simpson(f, a, b, N):
if N & 1:
raise ValueError('Ugyldig tall')
I = 0
h = float((b - a)/N)
x = float(a)
for i in range(0, N/2):
I += 2 * f(x) + (4.0 * f(x + h))
x += 2 * h
I += float(f(b) - f(a))
I *= h/3
print "The sum is: ", I
def f(x):
return x*final_cos(final_3root(x))
print simpson(f, 1.0, 50.0, 10)
'final_3root'和'simpson'沒有return語句,所以默認返回'None'。 – poke