1
我已經使用重新訓練圖像,例如再培訓培養了tensorflow模型:https://www.tensorflow.org/versions/master/how_tos/image_retraining/index.html上有許多圖像tensorflow預測
現在我想用它來預測上有許多圖像,我已經修改了這條巨蟒script對許多運行圖片:
import numpy as np
import tensorflow as tf
import glob
import os
modelFullPath = 'output_graph.pb'
def create_graph():
"""Creates a graph from saved GraphDef file and returns a saver."""
# Creates graph from saved graph_def.pb.
with tf.gfile.FastGFile(modelFullPath, 'rb') as f:
graph_def = tf.GraphDef()
graph_def.ParseFromString(f.read())
_ = tf.import_graph_def(graph_def, name='')
if __name__ == '__main__':
imagePath = 'MYFOLDERWITHIMAGES/*.jpg'
testimages=glob.glob(imagePath)
## init numpy array to hold all predictions
all_predictions = np.zeros(shape=(len(testimages),121)) ## 121 categories
# Creates graph from saved GraphDef.
create_graph()
with tf.Session() as sess:
softmax_tensor = sess.graph.get_tensor_by_name('final_result:0')
for i in range(len(testimages)):
image_data1 = tf.gfile.FastGFile(testimages[i], 'rb').read()
predictions = sess.run(softmax_tensor,
{'DecodeJpeg/contents:0': image_data1})
all_predictions[i,:] = np.squeeze(predictions)
if i % 100 == 0:
print(str(i) +' of a total of '+ str(len(testimages)))
但即使在我的GPU上運行,它是相當慢(約500每500圖像25秒)。 我該如何加快速度?