2016-02-23 98 views
0

如何排序或排列矩陣?第10排現在開始顯示,而它應該按照順序排在第10位。其他幾個元素也在中間放錯位置。在這種情況下,所有變量都是符號。謝謝。用matlab中的符號變量對矩陣進行排序

[ P10_1, P10_10, P10_2, P10_3, P10_4, P10_5, P10_6, P10_7, P10_8, P10_9, P1_1, P1_10, P1_2, P1_3, P1_4, P1_5, P1_6, P1_7, P1_8, P1_9, P2_1, P2_10, P2_2, P2_3, P2_4, P2_5, P2_6, P2_7, P2_8, P2_9, P3_1, P3_10, P3_2, P3_3, P3_4, P3_5, P3_6, P3_7, P3_8, P3_9, P4_1, P4_10, P4_2, P4_3, P4_4, P4_5, P4_6, P4_7, P4_8, P4_9, P5_1, P5_10, P5_2, P5_3, P5_4, P5_5, P5_6, P5_7, P5_8, P5_9, P6_1, P6_10, P6_2, P6_3, P6_4, P6_5, P6_6, P6_7, P6_8, P6_9, P7_1, P7_10, P7_2, P7_3, P7_4, P7_5, P7_6, P7_7, P7_8, P7_9, P8_1, P8_10, P8_2, P8_3, P8_4, P8_5, P8_6, P8_7, P8_8, P8_9, P9_1, P9_10, P9_2, P9_3, P9_4, P9_5, P9_6, P9_7, P9_8, P9_9] 

排序函數返回this。第10行應該在最後出現,但它出現在開始。

[ P10_1, P10_2, P10_3, P10_4, P10_5, P10_6, P10_7, P10_8, P10_9, P10_10, P1_1, P1_2, P1_3, P1_4, P1_5, P1_6, P1_7, P1_8, P1_9, P2_1, P2_2, P2_3, P2_4, P2_5, P2_6, P2_7, P2_8, P2_9, P3_1, P3_2, P3_3, P3_4, P3_5, P3_6, P3_7, P3_8, P3_9, P4_1, P4_2, P4_3, P4_4, P4_5, P4_6, P4_7, P4_8, P4_9, P5_1, P5_2, P5_3, P5_4, P5_5, P5_6, P5_7, P5_8, P5_9, P6_1, P6_2, P6_3, P6_4, P6_5, P6_6, P6_7, P6_8, P6_9, P7_1, P7_2, P7_3, P7_4, P7_5, P7_6, P7_7, P7_8, P7_9, P8_1, P8_2, P8_3, P8_4, P8_5, P8_6, P8_7, P8_8, P8_9, P9_1, P9_2, P9_3, P9_4, P9_5, P9_6, P9_7, P9_8, P9_9, P1_10, P2_10, P3_10, P4_10, P5_10, P6_10, P7_10, P8_10, P9_10] 
+0

您可以使用'sort(first_Mat)'獲得'second_mat',但我不確定我是否理解您的問題。 – Daniel

+1

請更新您的問題以顯示您的符號變量是如何創建的。你用'P = sym('P',10)'這樣的東西嗎?如果使用'P = sym('P0%d_0%d',10)'(參見'sym'的文檔),則可以更好地進行分類。 – horchler

回答

1

horchler在評論中建議創建適當的變量名稱使用sort正常工作,使字典分類。我認爲這是一個非常好的主意,但不幸的是他建議的格式字符串不起作用。它總是填充零,結束與此:

>> P1 = sym('P0%d_0%d',10) 

P = 

[ P01_01, P01_02, P01_03, P01_04, P01_05, P01_06, P01_07, P01_08, P01_09, P01_010] 
[ P02_01, P02_02, P02_03, P02_04, P02_05, P02_06, P02_07, P02_08, P02_09, P02_010] 
[ P03_01, P03_02, P03_03, P03_04, P03_05, P03_06, P03_07, P03_08, P03_09, P03_010] 
[ P04_01, P04_02, P04_03, P04_04, P04_05, P04_06, P04_07, P04_08, P04_09, P04_010] 
[ P05_01, P05_02, P05_03, P05_04, P05_05, P05_06, P05_07, P05_08, P05_09, P05_010] 
[ P06_01, P06_02, P06_03, P06_04, P06_05, P06_06, P06_07, P06_08, P06_09, P06_010] 
[ P07_01, P07_02, P07_03, P07_04, P07_05, P07_06, P07_07, P07_08, P07_09, P07_010] 
[ P08_01, P08_02, P08_03, P08_04, P08_05, P08_06, P08_07, P08_08, P08_09, P08_010] 
[ P09_01, P09_02, P09_03, P09_04, P09_05, P09_06, P09_07, P09_08, P09_09, P09_010] 
[ P010_01, P010_02, P010_03, P010_04, P010_05, P010_06, P010_07, P010_08, P010_09, P010_010] 

我試圖修復格式字符串,但失敗。 MATLAB不服格式字符串這將需要:

>> P1 = sym('P%.2d_%.2d',10) 
Error using sym>createCharMatrix (line 
2172) 
Symbolic matrix base name must be a 
simple variable name. 

Error in sym>convertCharWithOption 
(line 2138) 
     s = createCharMatrix(x,a); 

Error in sym>tomupad (line 1871) 
     S = convertCharWithOption(x,a); 

Error in sym (line 109) 
      S.s = tomupad(x,a); 

所以我寫了我自己的函數來解決這個問題:

function [ s ] = symMatrix(A,set) 
%preallocate an empty matrix to fill it in the loop 
s=sym(zeros(set)); 
%just some math t get the required amount of digits. 
digits=ceil(log10(max(set)+1)); 
%generate format string with required digits. Check documentation of sprintf for details 
format=['%s%.',num2str(digits),'d_%.',num2str(digits),'d']; 
%finally go through the matrix... 
for r=1:set(1) 
    for c=1:set(2) 
     %...get the right name for each variable .... 
     sprintf(format,A,r,c); 
     %...and create a variable with that name. 
     s(r,c)=sym(n); 
    end 
end 
end 

將會產生這樣的結果:

>> P2=symMatrix('P',[11,11]) 

P2 = 

[ P01_01, P01_02, P01_03, P01_04, P01_05, P01_06, P01_07, P01_08, P01_09, P01_10, P01_11] 
[ P02_01, P02_02, P02_03, P02_04, P02_05, P02_06, P02_07, P02_08, P02_09, P02_10, P02_11] 
[ P03_01, P03_02, P03_03, P03_04, P03_05, P03_06, P03_07, P03_08, P03_09, P03_10, P03_11] 
[ P04_01, P04_02, P04_03, P04_04, P04_05, P04_06, P04_07, P04_08, P04_09, P04_10, P04_11] 
[ P05_01, P05_02, P05_03, P05_04, P05_05, P05_06, P05_07, P05_08, P05_09, P05_10, P05_11] 
[ P06_01, P06_02, P06_03, P06_04, P06_05, P06_06, P06_07, P06_08, P06_09, P06_10, P06_11] 
[ P07_01, P07_02, P07_03, P07_04, P07_05, P07_06, P07_07, P07_08, P07_09, P07_10, P07_11] 
[ P08_01, P08_02, P08_03, P08_04, P08_05, P08_06, P08_07, P08_08, P08_09, P08_10, P08_11] 
[ P09_01, P09_02, P09_03, P09_04, P09_05, P09_06, P09_07, P09_08, P09_09, P09_10, P09_11] 
[ P10_01, P10_02, P10_03, P10_04, P10_05, P10_06, P10_07, P10_08, P10_09, P10_10, P10_11] 
[ P11_01, P11_02, P11_03, P11_04, P11_05, P11_06, P11_07, P11_08, P11_09, P11_10, P11_11] 

最後比較所有三種可能性的排序:

>> P3=sym('P',[11,11]) 

P3 = 

[ P1_1, P1_2, P1_3, P1_4, P1_5, P1_6, P1_7, P1_8, P1_9, P1_10, P1_11] 
[ P2_1, P2_2, P2_3, P2_4, P2_5, P2_6, P2_7, P2_8, P2_9, P2_10, P2_11] 
[ P3_1, P3_2, P3_3, P3_4, P3_5, P3_6, P3_7, P3_8, P3_9, P3_10, P3_11] 
[ P4_1, P4_2, P4_3, P4_4, P4_5, P4_6, P4_7, P4_8, P4_9, P4_10, P4_11] 
[ P5_1, P5_2, P5_3, P5_4, P5_5, P5_6, P5_7, P5_8, P5_9, P5_10, P5_11] 
[ P6_1, P6_2, P6_3, P6_4, P6_5, P6_6, P6_7, P6_8, P6_9, P6_10, P6_11] 
[ P7_1, P7_2, P7_3, P7_4, P7_5, P7_6, P7_7, P7_8, P7_9, P7_10, P7_11] 
[ P8_1, P8_2, P8_3, P8_4, P8_5, P8_6, P8_7, P8_8, P8_9, P8_10, P8_11] 
[ P9_1, P9_2, P9_3, P9_4, P9_5, P9_6, P9_7, P9_8, P9_9, P9_10, P9_11] 
[ P10_1, P10_2, P10_3, P10_4, P10_5, P10_6, P10_7, P10_8, P10_9, P10_10, P10_11] 
[ P11_1, P11_2, P11_3, P11_4, P11_5, P11_6, P11_7, P11_8, P11_9, P11_10, P11_11] 


>> sort(P1(:)).' %P1 = sym('P0%d_0%d',10) 

ans = 

[ P01_01, P01_02, P01_03, P01_04, P01_05, P01_06, P01_07, P01_08, P01_09, P02_01, P02_02, P02_03, P02_04, P02_05, P02_06, P02_07, P02_08, P02_09, P03_01, P03_02, P03_03, P03_04, P03_05, P03_06, P03_07, P03_08, P03_09, P04_01, P04_02, P04_03, P04_04, P04_05, P04_06, P04_07, P04_08, P04_09, P05_01, P05_02, P05_03, P05_04, P05_05, P05_06, P05_07, P05_08, P05_09, P06_01, P06_02, P06_03, P06_04, P06_05, P06_06, P06_07, P06_08, P06_09, P07_01, P07_02, P07_03, P07_04, P07_05, P07_06, P07_07, P07_08, P07_09, P08_01, P08_02, P08_03, P08_04, P08_05, P08_06, P08_07, P08_08, P08_09, P09_01, P09_02, P09_03, P09_04, P09_05, P09_06, P09_07, P09_08, P09_09, P010_01, P010_02, P010_03, P010_04, P010_05, P010_06, P010_07, P010_08, P010_09, P01_010, P02_010, P03_010, P04_010, P05_010, P06_010, P07_010, P08_010, P09_010, P010_010] 

>> sort(P2(:)).' %P2=symMatrix('P',[11,11]) 

ans = 

[ P01_01, P01_02, P01_03, P01_04, P01_05, P01_06, P01_07, P01_08, P01_09, P01_10, P01_11, P02_01, P02_02, P02_03, P02_04, P02_05, P02_06, P02_07, P02_08, P02_09, P02_10, P02_11, P03_01, P03_02, P03_03, P03_04, P03_05, P03_06, P03_07, P03_08, P03_09, P03_10, P03_11, P04_01, P04_02, P04_03, P04_04, P04_05, P04_06, P04_07, P04_08, P04_09, P04_10, P04_11, P05_01, P05_02, P05_03, P05_04, P05_05, P05_06, P05_07, P05_08, P05_09, P05_10, P05_11, P06_01, P06_02, P06_03, P06_04, P06_05, P06_06, P06_07, P06_08, P06_09, P06_10, P06_11, P07_01, P07_02, P07_03, P07_04, P07_05, P07_06, P07_07, P07_08, P07_09, P07_10, P07_11, P08_01, P08_02, P08_03, P08_04, P08_05, P08_06, P08_07, P08_08, P08_09, P08_10, P08_11, P09_01, P09_02, P09_03, P09_04, P09_05, P09_06, P09_07, P09_08, P09_09, P09_10, P09_11, P10_01, P10_02, P10_03, P10_04, P10_05, P10_06, P10_07, P10_08, P10_09, P10_10, P10_11, P11_01, P11_02, P11_03, P11_04, P11_05, P11_06, P11_07, P11_08, P11_09, P11_10, P11_11] 

>> sort(P3(:)).' %P3 = sym('P',10) 

ans = 

[ P10_1, P10_2, P10_3, P10_4, P10_5, P10_6, P10_7, P10_8, P10_9, P11_1, P11_2, P11_3, P11_4, P11_5, P11_6, P11_7, P11_8, P11_9, P10_10, P10_11, P11_10, P11_11, P1_1, P1_2, P1_3, P1_4, P1_5, P1_6, P1_7, P1_8, P1_9, P2_1, P2_2, P2_3, P2_4, P2_5, P2_6, P2_7, P2_8, P2_9, P3_1, P3_2, P3_3, P3_4, P3_5, P3_6, P3_7, P3_8, P3_9, P4_1, P4_2, P4_3, P4_4, P4_5, P4_6, P4_7, P4_8, P4_9, P5_1, P5_2, P5_3, P5_4, P5_5, P5_6, P5_7, P5_8, P5_9, P6_1, P6_2, P6_3, P6_4, P6_5, P6_6, P6_7, P6_8, P6_9, P7_1, P7_2, P7_3, P7_4, P7_5, P7_6, P7_7, P7_8, P7_9, P8_1, P8_2, P8_3, P8_4, P8_5, P8_6, P8_7, P8_8, P8_9, P9_1, P9_2, P9_3, P9_4, P9_5, P9_6, P9_7, P9_8, P9_9, P1_10, P1_11, P2_10, P2_11, P3_10, P3_11, P4_10, P4_11, P5_10, P5_11, P6_10, P6_11, P7_10, P7_11, P8_10, P8_11, P9_10, P9_11] 
+0

任何人都可以在最近的MATLAB版本中用'sym('P%.2d _%。2d',10)'來確認我的問題嗎?我正在使用R2013a – Daniel

+0

對P3進行排序後,爲什麼它以'P10_1'開頭。爲什麼不用'P1_1' –

+0

@AAhmed:P2使用我建議的代碼,應該排序正確,P3僅供參考。 – Daniel

0

我不知道你的意思「象徵性」是什麼?當它是一個字符串時,簡單地將它們解析爲數字(刪除'P'並用點'。'替換下劃線'_')。 最後在保存索引時進行排序。

this = '[ P10_1, P10_10, P10_2, P10_3, P10_4, P10_5, P10_6, P10_7, P10_8, P10_9, P1_1, P1_10, P1_2, P1_3, P1_4, P1_5, P1_6, P1_7, P1_8, P1_9, P2_1, P2_10, P2_2, P2_3, P2_4, P2_5, P2_6, P2_7, P2_8, P2_9, P3_1, P3_10, P3_2, P3_3, P3_4, P3_5, P3_6, P3_7, P3_8, P3_9, P4_1, P4_10, P4_2, P4_3, P4_4, P4_5, P4_6, P4_7, P4_8, P4_9, P5_1, P5_10, P5_2, P5_3, P5_4, P5_5, P5_6, P5_7, P5_8, P5_9, P6_1, P6_10, P6_2, P6_3, P6_4, P6_5, P6_6, P6_7, P6_8, P6_9, P7_1, P7_10, P7_2, P7_3, P7_4, P7_5, P7_6, P7_7, P7_8, P7_9, P8_1, P8_10, P8_2, P8_3, P8_4, P8_5, P8_6, P8_7, P8_8, P8_9, P9_1, P9_10, P9_2, P9_3, P9_4, P9_5, P9_6, P9_7, P9_8, P9_9]'; 

% this is the ugly part :) 
original = regexp([regexprep(this, {'\[','\]'}, {'',''}) ','], '(.*?),', 'tokens'); 
m = eval(regexprep(this, {'_', 'P'},{'.',''})); 

[s, idx] = sort(m); 

original(idx) 

正如你看到的,這只是工作的一部分,因爲「象徵性」 P10_1 < P10_10,但在數字層面,他們是平等的。所以你只需要想辦法處理它,例如確保始終有兩位小數,如果不是,則完成前導零。

如果它不是一個字符串,忽略此:)

+0

符號變量是[符號數學工具箱](http://www.mathworks.com/products/symbolic) – Daniel

+0

的一部分......但它們在工作空間(和'whos')中也被表示爲字符串。更優雅的方法是將每個符號變量放在結構化列表中,並將其作爲值添加到附加字段中,並簡單地對結構化列表進行排序...... – Markus

+0

它們是工作區中類sym的實例。 – Daniel

相關問題