我想獲得一些代碼,使用OpenMP在GPU上運行,但我沒有成功。在我的代碼中,我使用for
循環執行矩陣乘法:一次使用OpenMP pragma標記,一次沒有。 (這樣我就可以比較執行時間了。)在第一個循環之後,我調用omp_get_num_devices()
(這是我的主要測試,看看我是否實際連接到GPU)。無論我嘗試什麼,omp_get_num_devices()
始終返回0如何使用OpenMP提供的GPU?
我正在使用的計算機有兩個NVIDIA Tesla K40M GPU。 CUDA 7.0和CUDA 7.5作爲模塊在計算機上提供,並且CUDA 7.5模塊通常處於活動狀態。 gcc 4.9.3,5.1.0和7.1.0都可以作爲模塊使用,gcc 7.1.0模塊通常處於活動狀態。我正在編寫我的代碼$ g++ -fopenmp -omptargets=nvptx64sm_35-nvidia-linux ParallelExperimenting.cpp -o ParallelExperimenting
。我已經成功使用CPU並行處理了OpenMP代碼,但沒有使用GPU。
我的主要目標是讓omp_get_num_devices()
返回2,以證明我可以在OpenMP中檢測和使用GPU。我在這裏接受任何幫助將不勝感激。
這裏是我使用的檢查,如果被正確或不使用的GPU代碼:
#include <omp.h>
#include <fstream>
#include <stdio.h>
#include <math.h>
#include <stdlib.h>
#include <time.h>
#include <iomanip>
#include <cstdio>
#include <stdlib.h>
#include <iostream>
#include <time.h>
using namespace std;
double A [501][501];
double B [501][501];
double C [501][501][501];
double D [501][501];
double E [501][501];
double F [501][501][501];
double dummyvar;
int Mapped [501];
int main() {
int i, j, k, l, N, StallerGPU, StallerCPU;
//
N = 500;
// Variables merely uses to make the execution take longer and to
// exaggurate the difference in performance between first and second
// calculation
StallerGPU = 200;
StallerCPU = 200;
std::cout << " N = " << N << "\n";
// generate matrix to be used in first calculation
for (i=0; i<N; i++) {
for (k=0; k<N; k++) {
if (i == k) {
A[i][k] = i+1;
} else {
A[i][k] = i * k/N;
}
}
}
// generate other matrix to be used for the first calculation
for (k=0; k<N; k++) {
for (j=0; j<N; j++) {
B[k][j] = 2*(N-1)-k-j;
}
}
// Slightly adjusted matrices for second calculation
for (i=0; i<N; i++) {
for (k=0; k<N; k++) {
if (i == k) {
D[i][k] = i+2;
} else {
D[i][k] = i * k/N - 1;
}
}
}
for (k=0; k<N; k++) {
for (j=0; j<N; j++) {
E[k][j] = 2*(N+1)-k-j;
}
}
dummyvar = 0;
//Run the multiplication in parallel using GPUs
double diff;
time_t time1;
time1 = time(NULL); // CPU time counter
cout << endl << " GPU section begins at " << ctime(&time1) << endl;
// This pragma is frequently changed to try different tags
#pragma omp for collapse(4) private(i, j, k, l)
for (i=0; i<N; i++) {
// Mapped[i] = omp_is_initial_device();
for (j=0; j<N; j++) {
for (k=0; k<N; k++) {
for(l = 0; l < StallerGPU; l++) {
C[i][j][k] = A[i][k] * B[k][j] ;
dummyvar += A[i][k] * B[k][j] * (l + 1);
}
}
// cout << " i " << i << endl;
}
}
//record the time it took to run the multiplication
time_t time2 = time(NULL);
cout << " number of devices: " << omp_get_num_devices() << endl;
cout << " dummy variable: " << dummyvar << endl;
float cpumin = difftime(time2,time1);
diff = difftime(time2,time1);
cout << " stopping at delta GPU time: " << cpumin << endl;
cout << " terminating at " << ctime(&time2) << endl;
cout << " GPU time elasped " << diff << " s" << endl;
cout << endl;
dummyvar = 0;
time_t time3 = time(NULL);
cout << endl << " CPU section begins at " << ctime(&time3) << endl;
// #pragma omp single
for (i=0; i<N; i++) {
for (j=0; j<N; j++) {
for (k=0; k<N; k++) {
for (int l=0; l<StallerCPU; l++) {
F[i][j][k] = D[i][k] * E[k][j];
dummyvar += D[i][k] * E[k][j] * (l - 1);
}
}
}
}
// the sum to complete the matrix calculation is left out here, but would
// only be used to check if the result of the calculation is correct
time_t time4 = time(NULL);
cpumin = difftime(time4,time3);
diff = difftime(time4,time3);
cout << " dummy variable: " << dummyvar << endl;
cout << " stopping at delta CPU time: " << cpumin << endl;
cout << " terminating at " << ctime(&time4) << endl;
cout << " CPU time elasped " << diff << " s" << endl;
//Compare the time it took to confirm that we actually used GPUs to parallelize.
}
這裏是運行DEVICEQUERY樣本CUDA代碼的結果。
./deviceQuery Starting...
CUDA Device Query (Runtime API) version (CUDART static linking)
Detected 2 CUDA Capable device(s)
Device 0: "Tesla K40m"
CUDA Driver Version/Runtime Version 7.5/7.5
CUDA Capability Major/Minor version number: 3.5
Total amount of global memory: 11520 MBytes (12079136768 bytes)
(15) Multiprocessors, (192) CUDA Cores/MP: 2880 CUDA Cores
GPU Max Clock rate: 745 MHz (0.75 GHz)
Memory Clock rate: 3004 Mhz
Memory Bus Width: 384-bit
L2 Cache Size: 1572864 bytes
Maximum Texture Dimension Size (x,y,z) 1D=(65536), 2D=(65536, 65536), 3D=(4096, 4096, 4096)
Maximum Layered 1D Texture Size, (num) layers 1D=(16384), 2048 layers
Maximum Layered 2D Texture Size, (num) layers 2D=(16384, 16384), 2048 layers
Total amount of constant memory: 65536 bytes
Total amount of shared memory per block: 49152 bytes
Total number of registers available per block: 65536
Warp size: 32
Maximum number of threads per multiprocessor: 2048
Maximum number of threads per block: 1024
Max dimension size of a thread block (x,y,z): (1024, 1024, 64)
Max dimension size of a grid size (x,y,z): (2147483647, 65535, 65535)
Maximum memory pitch: 2147483647 bytes
Texture alignment: 512 bytes
Concurrent copy and kernel execution: Yes with 2 copy engine(s)
Run time limit on kernels: No
Integrated GPU sharing Host Memory: No
Support host page-locked memory mapping: Yes
Alignment requirement for Surfaces: Yes
Device has ECC support: Enabled
Device supports Unified Addressing (UVA): Yes
Device PCI Domain ID/Bus ID/location ID: 0/130/0
Compute Mode:
< Default (multiple host threads can use ::cudaSetDevice() with device simultaneously) >
Device 1: "Tesla K40m"
CUDA Driver Version/Runtime Version 7.5/7.5
CUDA Capability Major/Minor version number: 3.5
Total amount of global memory: 11520 MBytes (12079136768 bytes)
(15) Multiprocessors, (192) CUDA Cores/MP: 2880 CUDA Cores
GPU Max Clock rate: 745 MHz (0.75 GHz)
Memory Clock rate: 3004 Mhz
Memory Bus Width: 384-bit
L2 Cache Size: 1572864 bytes
Maximum Texture Dimension Size (x,y,z) 1D=(65536), 2D=(65536, 65536), 3D=(4096, 4096, 4096)
Maximum Layered 1D Texture Size, (num) layers 1D=(16384), 2048 layers
Maximum Layered 2D Texture Size, (num) layers 2D=(16384, 16384), 2048 layers
Total amount of constant memory: 65536 bytes
Total amount of shared memory per block: 49152 bytes
Total number of registers available per block: 65536
Warp size: 32
Maximum number of threads per multiprocessor: 2048
Maximum number of threads per block: 1024
Max dimension size of a thread block (x,y,z): (1024, 1024, 64)
Max dimension size of a grid size (x,y,z): (2147483647, 65535, 65535)
Maximum memory pitch: 2147483647 bytes
Texture alignment: 512 bytes
Concurrent copy and kernel execution: Yes with 2 copy engine(s)
Run time limit on kernels: No
Integrated GPU sharing Host Memory: No
Support host page-locked memory mapping: Yes
Alignment requirement for Surfaces: Yes
Device has ECC support: Enabled
Device supports Unified Addressing (UVA): Yes
Device PCI Domain ID/Bus ID/location ID: 0/131/0
Compute Mode:
< Default (multiple host threads can use ::cudaSetDevice() with device simultaneously) >
> Peer access from Tesla K40m (GPU0) -> Tesla K40m (GPU1) : Yes
> Peer access from Tesla K40m (GPU1) -> Tesla K40m (GPU0) : Yes
deviceQuery, CUDA Driver = CUDART, CUDA Driver Version = 7.5, CUDA Runtime Version = 7.5, NumDevs = 2, Device0 = Tesla K40m, Device1 = Tesla K40m
Result = PASS
你可以上傳一個最低工作示例,顯示你正在嘗試做什麼? – Richard
歡迎來到Stack Overflow!你的帖子不幸遺失了[mcve]。請訪問[幫助中心](http://stackoverflow.com/help)並閱讀[如何提出一個好問題]部分(http://stackoverflow.com/help/how-to-ask)。 –
我添加了我的測試代碼。 – Josiah