UPDATE2:一個更好的標題(現在我明白這個問題)是: 哪些是SciPy的optimize.fmin輸入正確的語法?SciPy的optimize.fmin ValueError異常:零大小的數組還原操作的最大不具有身份
更新:請求可運行代碼,因此函數定義已被替換爲可運行代碼。樣本輸入數據已經被硬編碼爲numpy數組'data'。
我想用scipy優化一個函數,但是我確實卡住了,並且必須求助。一個零長度的數組正在傳遞給優化器中的一個方法,我不明白爲什麼,也不知道如何解決這個問題。
的這是什麼代碼是試圖做一個簡要介紹:
- 定數據集的「數據」由單獨的意見「R」
- 估計的參數「M」,這是最可能的值已經引起了「數據」
- 對於給定的米,計算的概率P(R | M),用於在「數據」
- 對於給定的米觀察每個「R」,計算的概率P(米|數據)「m」生成數據。
- 定義一個輔助函數,用於optimize.fmin。
- 使用SciPy optimize.fmin確定助手(m |數據)最大化的m。
當我運行這段代碼我得到的錯誤是: ValueError異常:零大小的數組還原操作的最大不具有身份
這裏是一個代碼運行的片段產生在我的機器上的錯誤。
#!/usr/bin/env python2.7
import numpy as np
from scipy import optimize
def p_of_r(m, r): ## this calculates p(r|m) for each datum r
r_range = np.arange(0, r+1, 1, dtype='int')
p_r = []
p_r = np.array([0.0 for a in r_range])
for x in r_range:
if x == 0:
p_r[x] = np.exp(-1 * m)
else:
total = 0.0
for y in np.arange(0, x, 1, dtype='int'):
current = (p_r[y])/(x - y + 1)
total = current + total
p_r[x] = (m/x) * total
return p_r
def likelihood_function(m, *data): # calculates P(m|data) using entire data set
p_r = p_of_r(m, np.ma.max(data))
p_r_m = np.array([p_r[y] for y in data])
bigP = np.prod(p_r_m)
return bigP
def main():
data = np.array([10, 10, 7, 19, 9, 23, 26, 7, 164, 16 ])
median_r = np.median(data)
def Drake(m):
return median_r/m - np.log(m)
m_initial = optimize.broyden1(Drake, 1)
def helper(x, *args):
helper_value = -1 * likelihood_function(x, *args)
return helper_value
# here is the actual optimize.fmin
fmin_result = optimize.fmin(helper, x0=[m_initial], args=data)
print fmin_result
# for i in np.arange(0.0, 25.0, 0.1):
# print i, helper(i, data)
if __name__ == "__main__" : main()
錯誤本身: ValueError異常:零大小的數組到歸約運算最大具有
回溯下面提供沒有標識。
ValueError Traceback (most recent call last)
/Library/Frameworks/Python.framework/Versions/2.7/lib/python2.7/site-packages/IPython/utils/py3compat.pyc in execfile(fname, *where)
176 else:
177 filename = fname
--> 178 __builtin__.execfile(filename, *where)
/Users/deyler/bin/MSS-likelihood-minimal.py in <module>()
43 print fmin_result
44
---> 45 if __name__ == "__main__" : main()
/Users/deyler/bin/MSS-likelihood-minimal.py in main()
40
41
---> 42 fmin_result = optimize.fmin(helper, x0=[m_initial], args=data)
43 print fmin_result
44
/Library/Frameworks/Python.framework/Versions/2.7/lib/python2.7/site-packages/scipy/optimize/optimize.pyc in fmin(func, x0, args, xtol, ftol, maxiter, maxfun, full_output, disp, retall, callback)
371 'return_all': retall}
372
--> 373 res = _minimize_neldermead(func, x0, args, callback=callback, **opts)
374 if full_output:
375 retlist = res['x'], res['fun'], res['nit'], res['nfev'], res['status']
/Library/Frameworks/Python.framework/Versions/2.7/lib/python2.7/site-packages/scipy/optimize/optimize.pyc in _minimize_neldermead(func, x0, args, callback, xtol, ftol, maxiter, maxfev, disp, return_all, **unknown_options)
436 if retall:
437 allvecs = [sim[0]]
--> 438 fsim[0] = func(x0)
439 nonzdelt = 0.05
440 zdelt = 0.00025
/Library/Frameworks/Python.framework/Versions/2.7/lib/python2.7/site-packages/scipy/optimize/optimize.pyc in function_wrapper(*wrapper_args)
279 def function_wrapper(*wrapper_args):
280 ncalls[0] += 1
--> 281 return function(*(wrapper_args + args))
282
283 return ncalls, function_wrapper
/Users/deyler/bin/MSS-likelihood-minimal.py in helper(x, *args)
33 m_initial = optimize.broyden1(Drake, 1)
34 def helper(x, *args):
---> 35 helper_value = -1 * likelihood_function(x, *args)
36 return helper_value
37
/Users/deyler/bin/MSS-likelihood-minimal.py in likelihood_function(m, *data)
21
22 def likelihood_function(m, *data):
---> 23 p_r = p_of_r(m, np.ma.max(data))
24 p_r_m = np.array([p_r[y] for y in data])
25 bigP = np.prod(p_r_m)
/Library/Frameworks/Python.framework/Versions/2.7/lib/python2.7/site-packages/numpy/ma/core.pyc in max(obj, axis, out, fill_value)
5899 # If obj doesn't have a max method,
5900 # ...or if the method doesn't accept a fill_value argument
-> 5901 return asanyarray(obj).max(axis=axis, fill_value=fill_value, out=out)
5902 max.__doc__ = MaskedArray.max.__doc__
5903
/Library/Frameworks/Python.framework/Versions/2.7/lib/python2.7/site-packages/numpy/ma/core.pyc in max(self, axis, out, fill_value)
5159 # No explicit output
5160 if out is None:
-> 5161 result = self.filled(fill_value).max(axis=axis, out=out).view(type(self))
5162 if result.ndim:
5163 # Set the mask
/Library/Frameworks/Python.framework/Versions/2.7/lib/python2.7/site-packages/numpy/core/_methods.pyc in _amax(a, axis, out, keepdims)
8 def _amax(a, axis=None, out=None, keepdims=False):
9 return um.maximum.reduce(a, axis=axis,
---> 10 out=out, keepdims=keepdims)
11
12 def _amin(a, axis=None, out=None, keepdims=False):
ValueError: zero-size array to reduction operation maximum which has no identity
請提供你正在處理的樣品數據,同時得到你的錯誤 – alko
它看起來像你的數據是空的。不幸的是,我們無法確定數據來自哪裏。此外,您的錯誤信息與您的代碼不符。在剝離或簡化代碼時,請盡最大努力構建一個最小化,可運行的示例,以便在運行時顯示發佈的錯誤。如果你不能這樣做,請至少使其與錯誤信息一致。 – user2357112
@alko,@ user2357112:發佈了可運行的錯誤生成代碼。數據是明確定義的。如果'data'看起來是空的,那麼我對優化器的輸入做了錯誤的處理。 – dangenet