2
我在計算2 * Volume
的sphere(dimension=4)/Volume
的cylinder(dimension=4)
。我遇到的問題是解決問題的第一種方法。第二種方法給出了正確的答案。也就是說,當答案爲1.17時,我得到1.14。這些計劃如何不同?我無法發現差異。Python - 重構後的程序返回不同的結果
import random
# FIRST WAY
print('elegant solution')
coordinates = [0] * 3
alpha = 0
delta = 0.1
deltas = [0] * 3
n_trials = 1000000
n_hits = 0
for a in range(6):
for i in range(n_trials):
# gets random deltas, and random alpha for 4th dimension
deltas = [random.uniform(-delta, delta) for coordinate in deltas]
alpha = random.uniform(-1.0, 1.0)
# sum of the (n - 1) first components
sum_components = sum((coordinates[j] + deltas[j])**2 for j in range(3))
# if the sample is inside the cylinder
if sum_components < 1.0:
coordinates = [coordinates[j] + deltas[j] for j in range(3)]
# if the sample is inside the sphere
if sum_components + alpha**2 < 1.0:
n_hits += 1
print (2.0 * float(n_hits)/float(n_trials)) # 2V_sph(4)/V_cyl(4) where V_sph=hits Vcyl=trials
coordinates = [0] * 3
n_hits = 0
# SECOND WAY
print('typical solution')
x, y, z, alpha = 0.0, 0.0, 0.0, 0.0
delta = 0.1
n_trials = 1000000
n_hits = 0
for a in range (6):
for i in range(n_trials):
# gets random deltas, and random alpha for 4th dimension
del_x, del_y, del_z, alpha = random.uniform(-delta, delta), random.uniform(-delta, delta), random.uniform(-delta, delta), random.uniform(-1, 1)
# if the sample is inside the cylinder
if (x + del_x)**2 + (y + del_y)**2 + (z + del_z)**2 < 1.0:
x, y, z = x + del_x, y + del_y, z + del_z
# if the sample is inside the sphere
if x**2 + y**2 + z**2 + alpha**2 < 1.0:
n_hits += 1
print (2.0 * n_hits/float(n_trials)) # 2V_sph(4)/V_cyl(4) where V_sph=hits Vcyl=trials
x, y, z = 0.0, 0.0, 0.0
n_hits = 0
您可以在答案添加工作表現,以及:'(SUM(我** 2我在座標)+字母** 2)':) – officialaimm
謝謝都非常許多! :) – Caterina
@Caterina我已經做了一些重構,我希望這是有用的,因爲你正在寫一個「優雅」的解決方案。 –