2015-11-02 90 views
6

我正在使用Keras庫創建神經網絡。我有一個iPython Notebook來加載訓練數據,初始化網絡並「適應」神經網絡的權重。 最後,我使用save_weights()方法保存了權重。 代碼如下:Keras加載神經網絡的權重/預測時出錯

from keras.models import Sequential 
from keras.layers.core import Dense, Dropout, Activation 
from keras.optimizers import SGD 
from keras.regularizers import l2 
from keras.callbacks import History 

[...] 

input_size = data_X.shape[1] 
output_size = data_Y.shape[1] 
hidden_size = 100 
learning_rate = 0.01 
num_epochs = 100 
batch_size = 75 

model = Sequential() 
model.add(Dense(hidden_size, input_dim=input_size, init='uniform')) 
model.add(Activation('tanh')) 
model.add(Dropout(0.2)) 
model.add(Dense(hidden_size)) 
model.add(Activation('tanh')) 
model.add(Dropout(0.2)) 
model.add(Dense(output_size)) 
model.add(Activation('tanh')) 

sgd = SGD(lr=learning_rate, decay=1e-6, momentum=0.9, nesterov=True) 
model.compile(loss='mse', optimizer=sgd) 

model.fit(X_NN_part1, Y_NN_part1, batch_size=batch_size, nb_epoch=num_epochs, validation_data=(X_NN_part2, Y_NN_part2), callbacks=[history]) 

y_pred = model.predict(X_NN_part2) # works well 

model.save_weights('keras_w') 

然後,在另一個IPython的筆記本電腦,我只是想用這些權重和預測給出輸入某些輸出值。我初始化相同的神經網絡,然後加載權重。

# same headers 
input_size = 37 
output_size = 40 
hidden_size = 100 

model = Sequential() 
model.add(Dense(hidden_size, input_dim=input_size, init='uniform')) 
model.add(Activation('tanh')) 
model.add(Dropout(0.2)) 
model.add(Dense(hidden_size)) 
model.add(Activation('tanh')) 
model.add(Dropout(0.2)) 
model.add(Dense(output_size)) 
model.add(Activation('tanh')) 

model.load_weights('keras_w') 
#no error until here 

y_pred = model.predict(X_nn) 

問題是,顯然,load_weights方法不足以擁有功能模型。我得到一個錯誤:

--------------------------------------------------------------------------- 
AttributeError       Traceback (most recent call last) 
<ipython-input-17-e6d32bc0d547> in <module>() 
    1 
----> 2 y_pred = model.predict(X_nn) 
C:\XXXXXXX\Local\Continuum\Anaconda\lib\site-packages\keras\models.pyc in predict(self, X, batch_size, verbose) 
491  def predict(self, X, batch_size=128, verbose=0): 
492   X = standardize_X(X) 
--> 493   return self._predict_loop(self._predict, X, batch_size, verbose)[0] 
494 
495  def predict_proba(self, X, batch_size=128, verbose=1): 

AttributeError: 'Sequential' object has no attribute '_predict' 

任何想法? 非常感謝。

回答

9

您需要撥打model.compile。這可以在model.load_weights呼叫之前或之後完成,但必須在指定模型架構之後並且在model.predict呼叫之前完成。

+0

謝謝。有效 :) – Julian