2016-01-28 54 views
0

當我嘗試在Cloudera 5.5.1版本上使用OOzie執行spark任務時,我正在獲取java.lang.NoSuchFieldError:INT_8錯誤。 任何幫助,將不勝感激。通過oozie運行spark任務時獲取java.lang.NoSuchFieldError:INT_8錯誤

請在下面找到錯誤stackstrace。

16/01/28 11:21:17 WARN TaskSetManager: Lost task 0.2 in stage 20.0 (TID 40, Zlab-physrv1): java.lang.NoSuchFieldError: INT_8 
    at org.apache.spark.sql.execution.datasources.parquet.CatalystSchemaConverter.convertField(CatalystSchemaConverter.scala:327) 
    at org.apache.spark.sql.execution.datasources.parquet.CatalystSchemaConverter.convertField(CatalystSchemaConverter.scala:312) 
    at org.apache.spark.sql.execution.datasources.parquet.CatalystSchemaConverter$$anonfun$convertField$1.apply(CatalystSchemaConverter.scala:517) 
    at org.apache.spark.sql.execution.datasources.parquet.CatalystSchemaConverter$$anonfun$convertField$1.apply(CatalystSchemaConverter.scala:516) 
    at scala.collection.IndexedSeqOptimized$class.foldl(IndexedSeqOptimized.scala:51) 
    at scala.collection.IndexedSeqOptimized$class.foldLeft(IndexedSeqOptimized.scala:60) 
    at scala.collection.mutable.ArrayOps$ofRef.foldLeft(ArrayOps.scala:108) 
    at org.apache.spark.sql.execution.datasources.parquet.CatalystSchemaConverter.convertField(CatalystSchemaConverter.scala:516) 
    at org.apache.spark.sql.execution.datasources.parquet.CatalystSchemaConverter.convertField(CatalystSchemaConverter.scala:312) 
    at org.apache.spark.sql.execution.datasources.parquet.CatalystSchemaConverter.convertField(CatalystSchemaConverter.scala:521) 
    at org.apache.spark.sql.execution.datasources.parquet.CatalystSchemaConverter.convertField(CatalystSchemaConverter.scala:312) 
    at org.apache.spark.sql.execution.datasources.parquet.CatalystSchemaConverter$$anonfun$convert$1.apply(CatalystSchemaConverter.scala:305) 
    at org.apache.spark.sql.execution.datasources.parquet.CatalystSchemaConverter$$anonfun$convert$1.apply(CatalystSchemaConverter.scala:305) 
    at scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:244) 
    at scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:244) 
    at scala.collection.Iterator$class.foreach(Iterator.scala:727) 
    at scala.collection.AbstractIterator.foreach(Iterator.scala:1157) 
    at scala.collection.IterableLike$class.foreach(IterableLike.scala:72) 
    at org.apache.spark.sql.types.StructType.foreach(StructType.scala:92) 
    at scala.collection.TraversableLike$class.map(TraversableLike.scala:244) 
    at org.apache.spark.sql.types.StructType.map(StructType.scala:92) 
    at org.apache.spark.sql.execution.datasources.parquet.CatalystSchemaConverter.convert(CatalystSchemaConverter.scala:305) 
    at org.apache.spark.sql.execution.datasources.parquet.ParquetTypesConverter$.convertFromAttributes(ParquetTypesConverter.scala:58) 
    at org.apache.spark.sql.execution.datasources.parquet.RowWriteSupport.init(ParquetTableSupport.scala:55) 
    at parquet.hadoop.ParquetOutputFormat.getRecordWriter(ParquetOutputFormat.java:277) 
    at parquet.hadoop.ParquetOutputFormat.getRecordWriter(ParquetOutputFormat.java:251) 
    at org.apache.spark.sql.execution.datasources.parquet.ParquetOutputWriter.<init>(ParquetRelation.scala:94) 
    at org.apache.spark.sql.execution.datasources.parquet.ParquetRelation$$anon$3.newInstance(ParquetRelation.scala:272) 
    at org.apache.spark.sql.execution.datasources.DefaultWriterContainer.writeRows(WriterContainer.scala:233) 
    at org.apache.spark.sql.execution.datasources.InsertIntoHadoopFsRelation$$anonfun$run$1$$anonfun$apply$mcV$sp$3.apply(InsertIntoHadoopFsRelation.scala:150) 
    at org.apache.spark.sql.execution.datasources.InsertIntoHadoopFsRelation$$anonfun$run$1$$anonfun$apply$mcV$sp$3.apply(InsertIntoHadoopFsRelation.scala:150) 
    at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:66) 
    at org.apache.spark.scheduler.Task.run(Task.scala:88) 
    at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:214) 
    at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1145) 
    at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:615) 
    at java.lang.Thread.run(Thread.java:745) 

按我的想法,我們通常使用時曾經有您所使用生成的代碼和你當前使用的瓶子罐子一些差異得到這個錯誤。

注意:當我試圖提交相同的一個使用spark-submit命令它運行良好。

問候 Nisith

回答

0

終於可以調試和解決問題。該問題與安裝有關,其中一個數據節點具有較早版本的拼花缸(5.2 cdh分佈)。用當前版本的罐子更換罐子後,工作正常。