2009-10-30 109 views
1

/ZIP 2.0加密我想o實施/ ZIP 2.0加密algoritm處理加密的zip文件作爲ZipCrypto的實現在java中

http://www.pkware.com/documents/casestudies/APPNOTE.TXT

討論我相信我已經跟着的zipcrypto規格,但似乎無法得到它的工作。我很確定這個問題與我對crc算法的解釋有關。

文檔狀態

CRC-32: (4 bytes) 

The CRC-32 algorithm was generously contributed by 
David Schwaderer and can be found in his excellent 
book "C Programmers Guide to NetBIOS" published by 
Howard W. Sams & Co. Inc. The 'magic number' for 
the CRC is 0xdebb20e3. The proper CRC pre and post 
conditioning is used, meaning that the CRC register 
is pre-conditioned with all ones (a starting value 
of 0xffffffff) and the value is post-conditioned by 
taking the one's complement of the CRC residual. 

下面是我使用的CRC32

public class PKZIPCRC32 { 
    private static final int CRC32_POLYNOMIAL = 0xdebb20e3; 
    private int     crc     = 0xffffffff; 
    private int     CRCTable[]; 

    public PKZIPCRC32() { 
     buildCRCTable(); 
    } 

    private void buildCRCTable() { 
     int i, j; 
     CRCTable = new int[256]; 
     for (i = 0; i <= 255; i++) { 
      crc = i; 
      for (j = 8; j > 0; j--) 
       if ((crc & 1) == 1) 
        crc = (crc >>> 1)^CRC32_POLYNOMIAL; 
       else 
        crc >>>= 1; 
      CRCTable[i] = crc; 
     } 
    } 

    private int crc32(byte buffer[], int start, int count, int lastcrc) { 
     int temp1, temp2; 
     int i = start; 

     crc = lastcrc; 

     while (count-- != 0) { 
      temp1 = crc >>> 8; 
      temp2 = CRCTable[(crc^buffer[i++]) & 0xFF]; 
      crc = temp1^temp2; 
     } 

     return crc; 
    } 

    public int crc32(int crc, byte buffer) { 
     return crc32(new byte[] { buffer }, 0, 1, crc); 
    } 
} 

下面是我完整的代碼片段。任何人都可以看到我做錯了什麼。

package org.apache.commons.compress.archivers.zip; 

import java.io.IOException; 
import java.io.InputStream; 

public class ZipCryptoInputStream extends InputStream { 
    public class PKZIPCRC32 { 
     private static final int CRC32_POLYNOMIAL = 0xdebb20e3; 
     private int     crc     = 0xffffffff; 
     private int     CRCTable[]; 

     public PKZIPCRC32() { 
      buildCRCTable(); 
     } 

     private void buildCRCTable() { 
      int i, j; 
      CRCTable = new int[256]; 
      for (i = 0; i <= 255; i++) { 
       crc = i; 
       for (j = 8; j > 0; j--) 
        if ((crc & 1) == 1) 
         crc = (crc >>> 1)^CRC32_POLYNOMIAL; 
        else 
         crc >>>= 1; 
       CRCTable[i] = crc; 
      } 
     } 

     private int crc32(byte buffer[], int start, int count, int lastcrc) { 
      int temp1, temp2; 
      int i = start; 

      crc = lastcrc; 

      while (count-- != 0) { 
       temp1 = crc >>> 8; 
       temp2 = CRCTable[(crc^buffer[i++]) & 0xFF]; 
       crc = temp1^temp2; 
      } 

      return crc; 
     } 

     public int crc32(int crc, byte buffer) { 
      return crc32(new byte[] { buffer }, 0, 1, crc); 
     } 
    } 

    private static final long ENCRYPTION_KEY_1 = 0x12345678; 
    private static final long ENCRYPTION_KEY_2 = 0x23456789; 
    private static final long ENCRYPTION_KEY_3 = 0x34567890; 
    private InputStream   baseInputStream  = null; 
    private final PKZIPCRC32 checksumEngine  = new PKZIPCRC32(); 
    private long[]    keys    = null; 

    public ZipCryptoInputStream(ZipArchiveEntry zipEntry, InputStream inputStream, String passwd) throws Exception { 
     baseInputStream = inputStream; 
     // Decryption 
     // ---------- 
     // PKZIP encrypts the compressed data stream. Encrypted files must 
     // be decrypted before they can be extracted. 
     // 
     // Each encrypted file has an extra 12 bytes stored at the start of 
     // the data area defining the encryption header for that file. The 
     // encryption header is originally set to random values, and then 
     // itself encrypted, using three, 32-bit keys. The key values are 
     // initialized using the supplied encryption password. After each byte 
     // is encrypted, the keys are then updated using pseudo-random number 
     // generation techniques in combination with the same CRC-32 algorithm 
     // used in PKZIP and described elsewhere in this document. 
     // 
     // The following is the basic steps required to decrypt a file: 
     // 
     // 1) Initialize the three 32-bit keys with the password. 
     // 2) Read and decrypt the 12-byte encryption header, further 
     // initializing the encryption keys. 
     // 3) Read and decrypt the compressed data stream using the 
     // encryption keys. 

     // Step 1 - Initializing the encryption keys 
     // ----------------------------------------- 
     // 
     // Key(0) <- 305419896 
     // Key(1) <- 591751049 
     // Key(2) <- 878082192 
     // 
     // loop for i <- 0 to length(password)-1 
     // update_keys(password(i)) 
     // end loop 
     // 
     // Where update_keys() is defined as: 
     // 
     // update_keys(char): 
     // Key(0) <- crc32(key(0),char) 
     // Key(1) <- Key(1) + (Key(0) & 000000ffH) 
     // Key(1) <- Key(1) * 134775813 + 1 
     // Key(2) <- crc32(key(2),key(1) >> 24) 
     // end update_keys 
     // 
     // Where crc32(old_crc,char) is a routine that given a CRC value and a 
     // character, returns an updated CRC value after applying the CRC-32 
     // algorithm described elsewhere in this document. 

     keys = new long[] { ENCRYPTION_KEY_1, ENCRYPTION_KEY_2, ENCRYPTION_KEY_3 }; 
     for (int i = 0; i < passwd.length(); ++i) { 
      update_keys((byte) passwd.charAt(i)); 
     } 

     // Step 2 - Decrypting the encryption header 
     // ----------------------------------------- 
     // 
     // The purpose of this step is to further initialize the encryption 
     // keys, based on random data, to render a plaintext attack on the 
     // data ineffective. 
     // 
     // Read the 12-byte encryption header into Buffer, in locations 
     // Buffer(0) thru Buffer(11). 
     // 
     // loop for i <- 0 to 11 
     // C <- buffer(i)^decrypt_byte() 
     // update_keys(C) 
     // buffer(i) <- C 
     // end loop 
     // 
     // Where decrypt_byte() is defined as: 
     // 
     // unsigned char decrypt_byte() 
     // local unsigned short temp 
     // temp <- Key(2) | 2 
     // decrypt_byte <- (temp * (temp^1)) >> 8 
     // end decrypt_byte 
     // 
     // After the header is decrypted, the last 1 or 2 bytes in Buffer 
     // should be the high-order word/byte of the CRC for the file being 
     // decrypted, stored in Intel low-byte/high-byte order. Versions of 
     // PKZIP prior to 2.0 used a 2 byte CRC check; a 1 byte CRC check is 
     // used on versions after 2.0. This can be used to test if the password 
     // supplied is correct or not. 
     byte[] encryptionHeader = new byte[12]; 
     baseInputStream.read(encryptionHeader); 
     for (int i = 0; i < encryptionHeader.length; i++) { 
      encryptionHeader[i] ^= decrypt_byte(); 
      update_keys(encryptionHeader[i]); 
     } 
    } 

    protected byte decrypt_byte() { 
     byte temp = (byte) (keys[2] | 2); 
     return (byte) ((temp * (temp^1)) >> 8); 
    } 

    @Override 
    public int read() throws IOException { 
     // 
     // Step 3 - Decrypting the compressed data stream 
     // ---------------------------------------------- 
     // 
     // The compressed data stream can be decrypted as follows: 
     // 
     // loop until done 
     // read a character into C 
     // Temp <- C^decrypt_byte() 
     // update_keys(temp) 
     // output Temp 
     // end loop 
     int read = baseInputStream.read(); 
     read ^= decrypt_byte(); 
     update_keys((byte) read); 
     return read; 
    } 

    private final void update_keys(byte ch) { 
     keys[0] = checksumEngine.crc32((int) keys[0], ch); 
     keys[1] = keys[1] + (byte) keys[0]; 
     keys[1] = keys[1] * 134775813 + 1; 
     keys[2] = checksumEngine.crc32((int) keys[2], (byte) (keys[1] >> 24)); 
    } 

} 
+1

java.util.zip.CRC32不會在這種情況下工作嗎? – 2009-10-30 18:29:39

+0

不能這樣做,因爲它是不同的,你需要在處理之前用crc值填充 看下面指向的代碼zz編碼器,你可以看到我在說什麼。由於java zip crc 32只需要sinl; ge輸入,所以基於文檔也不確定兩個輸入是如何連接在一起的。另外,我被假設爲多項式的整個魔力數字都讓我失望。 http://csfviewer.googlecode.com/svn/src/utils/Crc32.java – gomesla 2009-10-30 19:52:35

回答

1

我的最終解決方案—感謝ZZ Coder

package org.apache.commons.compress.archivers.zip; 

import java.io.IOException; 
import java.io.InputStream; 
import java.util.zip.ZipException; 

import org.apache.commons.io.EndianUtils; 

public class ZipCryptoInputStream extends InputStream { 

    private static final long[] CRC32_TABLE_PRECALCULATED = { 0x00000000L, 0x77073096L, 0xEE0E612CL, 0x990951BAL, 0x076DC419L, 0x706AF48FL, 0xE963A535L, 0x9E6495A3L, 0x0EDB8832L, 0x79DCB8A4L, 0xE0D5E91EL, 0x97D2D988L, 0x09B64C2BL, 0x7EB17CBDL, 0xE7B82D07L, 0x90BF1D91L, 0x1DB71064L, 0x6AB020F2L, 0xF3B97148L, 0x84BE41DEL, 0x1ADAD47DL, 0x6DDDE4EBL, 0xF4D4B551L, 0x83D385C7L, 0x136C9856L, 0x646BA8C0L, 0xFD62F97AL, 0x8A65C9ECL, 0x14015C4FL, 0x63066CD9L, 0xFA0F3D63L, 0x8D080DF5L, 0x3B6E20C8L, 0x4C69105EL, 0xD56041E4L, 0xA2677172L, 0x3C03E4D1L, 0x4B04D447L, 0xD20D85FDL, 0xA50AB56BL, 0x35B5A8FAL, 0x42B2986CL, 0xDBBBC9D6L, 0xACBCF940L, 0x32D86CE3L, 0x45DF5C75L, 0xDCD60DCFL, 0xABD13D59L, 0x26D930ACL, 0x51DE003AL, 0xC8D75180L, 0xBFD06116L, 0x21B4F4B5L, 0x56B3C423L, 0xCFBA9599L, 0xB8BDA50FL, 0x2802B89EL, 0x5F058808L, 0xC60CD9B2L, 0xB10BE924L, 0x2F6F7C87L, 0x58684C11L, 0xC1611DABL, 0xB6662D3DL, 0x76DC4190L, 0x01DB7106L, 0x98D220BCL, 0xEFD5102AL, 0x71B18589L, 0x06B6B51FL, 0x9FBFE4A5L, 
      0xE8B8D433L, 0x7807C9A2L, 0x0F00F934L, 0x9609A88EL, 0xE10E9818L, 0x7F6A0DBBL, 0x086D3D2DL, 0x91646C97L, 0xE6635C01L, 0x6B6B51F4L, 0x1C6C6162L, 0x856530D8L, 0xF262004EL, 0x6C0695EDL, 0x1B01A57BL, 0x8208F4C1L, 0xF50FC457L, 0x65B0D9C6L, 0x12B7E950L, 0x8BBEB8EAL, 0xFCB9887CL, 0x62DD1DDFL, 0x15DA2D49L, 0x8CD37CF3L, 0xFBD44C65L, 0x4DB26158L, 0x3AB551CEL, 0xA3BC0074L, 0xD4BB30E2L, 0x4ADFA541L, 0x3DD895D7L, 0xA4D1C46DL, 0xD3D6F4FBL, 0x4369E96AL, 0x346ED9FCL, 0xAD678846L, 0xDA60B8D0L, 0x44042D73L, 0x33031DE5L, 0xAA0A4C5FL, 0xDD0D7CC9L, 0x5005713CL, 0x270241AAL, 0xBE0B1010L, 0xC90C2086L, 0x5768B525L, 0x206F85B3L, 0xB966D409L, 0xCE61E49FL, 0x5EDEF90EL, 0x29D9C998L, 0xB0D09822L, 0xC7D7A8B4L, 0x59B33D17L, 0x2EB40D81L, 0xB7BD5C3BL, 0xC0BA6CADL, 0xEDB88320L, 0x9ABFB3B6L, 0x03B6E20CL, 0x74B1D29AL, 0xEAD54739L, 0x9DD277AFL, 0x04DB2615L, 0x73DC1683L, 0xE3630B12L, 0x94643B84L, 0x0D6D6A3EL, 0x7A6A5AA8L, 0xE40ECF0BL, 0x9309FF9DL, 0x0A00AE27L, 0x7D079EB1L, 0xF00F9344L, 0x8708A3D2L, 
      0x1E01F268L, 0x6906C2FEL, 0xF762575DL, 0x806567CBL, 0x196C3671L, 0x6E6B06E7L, 0xFED41B76L, 0x89D32BE0L, 0x10DA7A5AL, 0x67DD4ACCL, 0xF9B9DF6FL, 0x8EBEEFF9L, 0x17B7BE43L, 0x60B08ED5L, 0xD6D6A3E8L, 0xA1D1937EL, 0x38D8C2C4L, 0x4FDFF252L, 0xD1BB67F1L, 0xA6BC5767L, 0x3FB506DDL, 0x48B2364BL, 0xD80D2BDAL, 0xAF0A1B4CL, 0x36034AF6L, 0x41047A60L, 0xDF60EFC3L, 0xA867DF55L, 0x316E8EEFL, 0x4669BE79L, 0xCB61B38CL, 0xBC66831AL, 0x256FD2A0L, 0x5268E236L, 0xCC0C7795L, 0xBB0B4703L, 0x220216B9L, 0x5505262FL, 0xC5BA3BBEL, 0xB2BD0B28L, 0x2BB45A92L, 0x5CB36A04L, 0xC2D7FFA7L, 0xB5D0CF31L, 0x2CD99E8BL, 0x5BDEAE1DL, 0x9B64C2B0L, 0xEC63F226L, 0x756AA39CL, 0x026D930AL, 0x9C0906A9L, 0xEB0E363FL, 0x72076785L, 0x05005713L, 0x95BF4A82L, 0xE2B87A14L, 0x7BB12BAEL, 0x0CB61B38L, 0x92D28E9BL, 0xE5D5BE0DL, 0x7CDCEFB7L, 0x0BDBDF21L, 0x86D3D2D4L, 0xF1D4E242L, 0x68DDB3F8L, 0x1FDA836EL, 0x81BE16CDL, 0xF6B9265BL, 0x6FB077E1L, 0x18B74777L, 0x88085AE6L, 0xFF0F6A70L, 0x66063BCAL, 0x11010B5CL, 0x8F659EFFL, 
      0xF862AE69L, 0x616BFFD3L, 0x166CCF45L, 0xA00AE278L, 0xD70DD2EEL, 0x4E048354L, 0x3903B3C2L, 0xA7672661L, 0xD06016F7L, 0x4969474DL, 0x3E6E77DBL, 0xAED16A4AL, 0xD9D65ADCL, 0x40DF0B66L, 0x37D83BF0L, 0xA9BCAE53L, 0xDEBB9EC5L, 0x47B2CF7FL, 0x30B5FFE9L, 0xBDBDF21CL, 0xCABAC28AL, 0x53B39330L, 0x24B4A3A6L, 0xBAD03605L, 0xCDD70693L, 0x54DE5729L, 0x23D967BFL, 0xB3667A2EL, 0xC4614AB8L, 0x5D681B02L, 0x2A6F2B94L, 0xB40BBE37L, 0xC30C8EA1L, 0x5A05DF1BL, 0x2D02EF8DL }; 

    /* 
    * Uses irreducible polynomial: 1 + x + x^2 + x^4 + x^5 + x^7 + x^8 + x^10 + x^11 + x^12 + x^16 + x^22 + x^23 + x^26 
    * 
    * 0000 0100 1100 0001 0001 1101 1011 0111 0 4 C 1 1 D B 7 
    * 
    * The reverse of this polynomial is 
    * 
    * 0 2 3 8 8 B D E 
    */ 

    private static final int CRC32_POLYNOMIAL   = 0xEDB88320; 
    private static long[]  crc32Table     = CRC32_TABLE_PRECALCULATED; 

    // This is just here to show how we get the table if it wasn't pre-calculated 
    static { 
     if (false) { 
      int i, j; 
      crc32Table = new long[256]; 
      for (i = 0; i <= 255; i++) { 
       int crc = i; 
       for (j = 8; j > 0; j--) { 
        if ((crc & 1) == 1) { 
         crc = (crc >>> 1)^CRC32_POLYNOMIAL; 
        } else { 
         crc >>>= 1; 
        } 
       } 
       crc32Table[i] = Long.rotateLeft(crc, 32) >>> 32; 
      } 
     } 
    } 

    public static long crc32(long oldCrc, int character) { 
     return crc32Table[(int) (oldCrc^character) & 0x000000ff]^(oldCrc >> 8); 
    } 

    // public static void main(String[] args) { 
    // for (int i = 0; i < CRC_TABLE_PRECALCULATED.length; i++) { 
    // System.out.println(Long.toHexString(CRC_TABLE_PRECALCULATED[i]) + "=" + Long.toHexString(crcTable[i])); 
    // } 
    // } 

    private InputStream baseInputStream = null; 

    private long[]  keys   = null; 

    public ZipCryptoInputStream(ZipArchiveEntry zipEntry, InputStream inputStream, String passwd) throws Exception { 
     // PKZIP encrypts the compressed data stream. Encrypted files must 
     // be decrypted before they can be extracted. 
     //  
     // Each encrypted file has an extra 12 bytes stored at the start of 
     // the data area defining the encryption header for that file. The 
     // encryption header is originally set to random values, and then 
     // itself encrypted, using three, 32-bit keys. The key values are 
     // initialized using the supplied encryption password. After each byte 
     // is encrypted, the keys are then updated using pseudo-random number 
     // generation techniques in combination with the same CRC-32 algorithm 
     // used in PKZIP and described elsewhere in this document. 
     //  
     // The following is the basic steps required to decrypt a file: 
     //  
     // 1) Initialize the three 32-bit keys with the password. 
     // 2) Read and decrypt the 12-byte encryption header, further 
     // initializing the encryption keys. 
     // 3) Read and decrypt the compressed data stream using the 
     // encryption keys. 

     baseInputStream = inputStream; 

     // Step 1 - Initializing the encryption keys 
     // ----------------------------------------- 
     //  
     // Key(0) <- 305419896 
     // Key(1) <- 591751049 
     // Key(2) <- 878082192 

     keys = new long[] { 0x12345678l, 0x23456789l, 0x34567890l }; 

     // loop for i <- 0 to length(password)-1 
     // update_keys(password(i)) 
     // end loop 
     // 
     // Where update_keys() is defined as: 
     //   
     // update_keys(char): 
     // Key(0) <- crc32(key(0),char) 
     // Key(1) <- Key(1) + (Key(0) & 000000ffH) 
     // Key(1) <- Key(1) * 134775813 + 1 
     // Key(2) <- crc32(key(2),key(1) >> 24) 
     // end update_keys 
     // 
     // Where crc32(old_crc,char) is a routine that given a CRC value and a 
     // character, returns an updated CRC value after applying the CRC-32 
     // algorithm described elsewhere in this document. 
     for (int i = 0; i < passwd.length(); i++) { 
      update_keys((byte) passwd.charAt(i)); 
     } 

     // Step 2 - Decrypting the encryption header 
     // ----------------------------------------- 
     //  
     // The purpose of this step is to further initialize the encryption 
     // keys, based on random data, to render a plaintext attack on the 
     // data ineffective. 
     //  
     // Read the 12-byte encryption header into Buffer, in locations 
     // Buffer(0) thru Buffer(11). 
     //  
     // loop for i <- 0 to 11 
     // C <- buffer(i)^decrypt_byte() 
     // update_keys(C) 
     // buffer(i) <- C 
     // end loop 
     //  
     // Where decrypt_byte() is defined as: 
     //  
     // unsigned char decrypt_byte() 
     // local unsigned short temp 
     // temp <- Key(2) | 2 
     // decrypt_byte <- (temp * (temp^1)) >> 8 
     // end decrypt_byte 
     //  

     final byte[] encryptionHeader = new byte[12]; 
     for (int i = 0; i < 12; i++) { 
      encryptionHeader[i] = (byte) read(); 
     } 

     // After the header is decrypted, the last 1 or 2 bytes in Buffer 
     // should be the high-order word/byte of the CRC for the file being 
     // decrypted, stored in Intel low-byte/high-byte order. Versions of 
     // PKZIP prior to 2.0 used a 2 byte CRC check; a 1 byte CRC check is 
     // used on versions after 2.0. This can be used to test if the password 
     // supplied is correct or not. 
     byte[] passwordCheck = new byte[] { encryptionHeader[11], 0, 0, 0, 0, 0, 0, 0 }; 
     long suppliedPasswordCheck = EndianUtils.readSwappedLong(passwordCheck, 0); 
     long actualPasswordCheck = zipEntry.getCrc() & 0xff000000; 
     actualPasswordCheck = actualPasswordCheck >> 24; 
     if (actualPasswordCheck != suppliedPasswordCheck) { 
      throw new ZipException("Invalid password specified"); 
     } 
    } 

    private short decrypt_byte() { 
     int t = (int) ((keys[2] & 0xFFFF) | 2); 
     return (short) ((t * (t^1)) >> 8); 
    } 

    @Override 
    public int read() throws IOException { 
     // Step 3 - Decrypting the compressed data stream 
     // ---------------------------------------------- 
     //  
     // The compressed data stream can be decrypted as follows: 
     //  
     // loop until done 
     // read a character into C 
     // Temp <- C^decrypt_byte() 
     // update_keys(temp) 
     // output Temp 
     // end loop 

     int c = baseInputStream.read(); 
     if (c != -1) { 
      c = c^decrypt_byte(); 
      update_keys((byte) c); 
      c = c & 0xffff; 
     } 
     return c; 
    } 

    private void update_keys(short byteValue) { 
     keys[0] = crc32(keys[0], byteValue); 
     keys[1] = keys[1] + (keys[0] & 0x000000ffl); 
     keys[1] = (keys[1] * 134775813) + 1; 
     keys[2] = crc32(keys[2], (byte) (keys[1] >> 24)); 
    } 
}