0
我有一個SPARK應用程序,它使用TwitterUtils來讀取Twitter流,並使用流上的map和foreachRDD將Twitter消息放入數據庫。這一切都很好。我如何分離/關閉JavaDStream和TwitterUtils.createStream(...)
我的問題:一旦一切正在運行,什麼是從Twitter流中分離出最合適的方式。假設我只想收集1000條消息或運行集合60秒。
的代碼如下:
SparkConf sparkConf = new SparkConf().setAppName("Java spark twitter stream");
JavaStreamingContext ssc = new JavaStreamingContext(sparkConf, new Duration(1000));
JavaDStream<Status> tweets = TwitterUtils.createStream(ssc, filters);
JavaDStream<String> statuses = tweets.map(
new Function<Status, String>() {
public String call(Status status) {
//combine the strings here.
GeoLocation geoLocation = status.getGeoLocation();
if (geoLocation != null) {
String text = status.getText().replaceAll("[\r\n]", " ");
String line = geoLocation.getLongitude() + ",,,,"
+ geoLocation.getLatitude() + ",,,,"
+ status.getCreatedAt().getTime()
+ ",,,," + status.getUser().getId()
+ ",,,," + text;
return line;
} else {
return null;
}
}
}
).filter(new Function<String, Boolean>() {
public Boolean call(String input) {
return input != null;
}
});
statuses.print();
statuses.foreachRDD(new Function2<JavaRDD<String>, Time, Void>() {
@Override
public Void call(JavaRDD<String> rdd, Time time) {
SQLContext sqlContext
= JavaSQLContextSingleton
.getInstance(rdd.context());
sqlContext.setConf("spark.sql.tungsten.enabled", "false");
JavaRDD<Row> tweetRowRDD
= rdd.map(new TweetMapLoadFunction());
DataFrame statusesDataFrame
= sqlContext
.createDataFrame(
tweetRowRDD,
tweetSchema.createTweetStructType());
return null;
}
});
ssc.start();
ssc.awaitTermination();