如果性能很關鍵,這就是我使用的那種解決方案。
public class SimpleTable {
private final List<RandomAccessFile> files = new ArrayList<RandomAccessFile>();
private final List<FloatBuffer> buffers = new ArrayList<FloatBuffer>();
private final File baseDir;
private final int rows;
private SimpleTable(File baseDir, int rows) {
this.baseDir = baseDir;
this.rows = rows;
}
public static SimpleTable create(String baseName, int rows) throws IOException {
File baseDir = new File(baseName);
if (!baseDir.mkdirs()) throw new IOException("Failed to create " + baseName);
PrintWriter pw = new PrintWriter(baseName + "/rows");
pw.println(rows);
pw.close();
return new SimpleTable(baseDir, rows);
}
public static SimpleTable load(String baseName) throws IOException {
BufferedReader br = new BufferedReader(new FileReader(baseName + "/rows"));
int rows = Integer.parseInt(br.readLine());
br.close();
File baseDir = new File(baseName);
SimpleTable table = new SimpleTable(baseDir, rows);
File[] files = baseDir.listFiles();
Arrays.sort(files);
for (File file : files) {
if (!file.getName().endsWith(".float")) continue;
table.addColumnForFile(file);
}
return table;
}
private FloatBuffer addColumnForFile(File file) throws IOException {
RandomAccessFile rw = new RandomAccessFile(file, "rw");
MappedByteBuffer mbb = rw.getChannel().map(FileChannel.MapMode.READ_WRITE, 0, rows * 8);
mbb.order(ByteOrder.nativeOrder());
FloatBuffer db = mbb.asFloatBuffer();
files.add(rw);
buffers.add(db);
return db;
}
public int rows() {
return rows;
}
public int columns() {
return buffers.size();
}
public FloatBuffer addColumn() throws IOException {
return addColumnForFile(new File(baseDir, String.format("%04d.float", buffers.size())));
}
public FloatBuffer getColumn(int n) {
return buffers.get(n);
}
public void close() throws IOException {
for (RandomAccessFile file : files) {
file.close();
}
files.clear();
buffers.clear();
}
}
public class SimpleTableTestMain {
public static void main(String... args) throws IOException {
long start = System.nanoTime();
SimpleTable st = SimpleTable.create("test", 3 * 1000 * 1000);
for (int i = 0; i < 50; i++) {
FloatBuffer db = st.addColumn();
for (int j = 0; j < db.capacity(); j++)
db.put(j, i + j);
}
st.close();
long mid = System.nanoTime();
SimpleTable st2 = SimpleTable.load("test");
for (int i = 0; i < 50; i++) {
FloatBuffer db = st2.getColumn(i);
double sum = 0;
for (int j = 0; j < db.capacity(); j++)
sum += db.get(j);
assert sum > 0;
}
long end = System.nanoTime();
System.out.printf("Took %.3f seconds to write and %.3f seconds to read %,d rows and %,d columns%n",
(mid - start)/1e9, (end - mid)/1e9, st2.rows(), st2.columns());
st2.close();
}
}
打印
Took 2.070 seconds to write and 2.206 seconds to read 3,000,000 rows and 50 columns
所以有什麼問題嗎? – Darek
你是否看到這個解釋中的問題 – erogol
恐怕我明白你的問題的確切性質。你面臨什麼問題,你想做什麼? – Frankline