0
我試圖應用mapparttion功能如下之後創建一個新的數據框(在SparkSQL 1.6.2):添加新列使用Java API和JavaRDD在星火SQL數據幀<Row>
FlatMapFunction<Iterator<Row>,Row> mapPartitonstoTTF=rows->
{
List<Row> mappedRows=new ArrayList<Row>();
while(rows.hasNext())
{
Row row=rows.next();
Row mappedRow= RowFactory.create(row.getDouble(0),row.getString(1),row.getLong(2),row.getDouble(3),row.getInt(4),row.getString(5),
row.getString(6),row.getInt(7),row.getInt(8),row.getString(9),0L);
mappedRows.add(mappedRow);
}
return mappedRows;
};
JavaRDD<Row> sensorDataDoubleRDD=oldsensorDataDoubleDF.toJavaRDD().mapPartitions(mapPartitonstoTTF);
StructType oldSchema=oldsensorDataDoubleDF.schema();
StructType newSchema =oldSchema.add("TTF",DataTypes.LongType,false);
System.out.println("The new schema is: ");
newSchema.printTreeString();
System.out.println("The old schema is: ");
oldSchema.printTreeString();
DataFrame sensorDataDoubleDF=hc.createDataFrame(sensorDataDoubleRDD, newSchema);
sensorDataDoubleDF.show();
正如所看到的從上面我添加一個新的LongType列值爲0 RDDs使用RowFactory.create()
函數
但是,我在行運行sensorDataDoubleDF.show();如下:
org.apache.spark.SparkException: Job aborted due to stage failure: Task 117 in stage 26.0 failed 4 times, most recent failure: Lost task 117.3 in stage 26.0 (TID 3249, AUPER01-01-20-08-0.prod.vroc.com.au): scala.MatchError: 1435766400001 (of class java.lang.Long)
at org.apache.spark.sql.catalyst.CatalystTypeConverters$StringConverter$.toCatalystImpl(CatalystTypeConverters.scala:295)
at org.apache.spark.sql.catalyst.CatalystTypeConverters$StringConverter$.toCatalystImpl(CatalystTypeConverters.scala:294)
at org.apache.spark.sql.catalyst.CatalystTypeConverters$CatalystTypeConverter.toCatalyst(CatalystTypeConverters.scala:102)
at org.apache.spark.sql.catalyst.CatalystTypeConverters$StructConverter.toCatalystImpl(CatalystTypeConverters.scala:260)
at org.apache.spark.sql.catalyst.CatalystTypeConverters$StructConverter.toCatalystImpl(CatalystTypeConverters.scala:250)
at org.apache.spark.sql.catalyst.CatalystTypeConverters$CatalystTypeConverter.toCatalyst(CatalystTypeConverters.scala:102)
at org.apache.spark.sql.catalyst.CatalystTypeConverters$$anonfun$createToCatalystConverter$2.apply(CatalystTypeConverters.scala:401)
at org.apache.spark.sql.SQLContext$$anonfun$6.apply(SQLContext.scala:492)
at org.apache.spark.sql.SQLContext$$anonfun$6.apply(SQLContext.scala:492)
at scala.collection.Iterator$$anon$11.next(Iterator.scala:328)
at scala.collection.Iterator$$anon$11.next(Iterator.scala:328)
at scala.collection.Iterator$$anon$10.next(Iterator.scala:312)
at scala.collection.Iterator$class.foreach(Iterator.scala:727)
at scala.collection.AbstractIterator.foreach(Iterator.scala:1157)
at scala.collection.generic.Growable$class.$plus$plus$eq(Growable.scala:48)
at scala.collection.mutable.ArrayBuffer.$plus$plus$eq(ArrayBuffer.scala:103)
at scala.collection.mutable.ArrayBuffer.$plus$plus$eq(ArrayBuffer.scala:47)
at scala.collection.TraversableOnce$class.to(TraversableOnce.scala:273)
at scala.collection.AbstractIterator.to(Iterator.scala:1157)
at scala.collection.TraversableOnce$class.toBuffer(TraversableOnce.scala:265)
at scala.collection.AbstractIterator.toBuffer(Iterator.scala:1157)
at scala.collection.TraversableOnce$class.toArray(TraversableOnce.scala:252)
at scala.collection.AbstractIterator.toArray(Iterator.scala:1157)
at org.apache.spark.sql.execution.SparkPlan$$anonfun$5.apply(SparkPlan.scala:212)
at org.apache.spark.sql.execution.SparkPlan$$anonfun$5.apply(SparkPlan.scala:212)
at org.apache.spark.SparkContext$$anonfun$runJob$5.apply(SparkContext.scala:1882)
at org.apache.spark.SparkContext$$anonfun$runJob$5.apply(SparkContext.scala:1882)
at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:66)
at org.apache.spark.scheduler.Task.run(Task.scala:89)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:227)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617)
at java.lang.Thread.run(Thread.java:745)
舊的模式是
root
|-- data_quality: double (nullable = false)
|-- data_sensor: string (nullable = true)
|-- data_timestamp: long (nullable = false)
|-- data_valueDouble: double (nullable = false)
|-- day: integer (nullable = false)
|-- dpnode: string (nullable = true)
|-- dsnode: string (nullable = true)
|-- month: integer (nullable = false)
|-- year: integer (nullable = false)
|-- nodeid: string (nullable = true)
|-- nodename: string (nullable = true)
新的模式就像上面添加TTF列作爲LongType
root
|-- data_quality: double (nullable = false)
|-- data_sensor: string (nullable = true)
|-- data_timestamp: long (nullable = false)
|-- data_valueDouble: double (nullable = false)
|-- day: integer (nullable = false)
|-- dpnode: string (nullable = true)
|-- dsnode: string (nullable = true)
|-- month: integer (nullable = false)
|-- year: integer (nullable = false)
|-- nodeid: string (nullable = true)
|-- nodename: string (nullable = true)
|-- TTF: long (nullable = false)
我明白任何幫助,算起來我們我在哪裏犯錯。