你好:只是一個簡單的問題..我希望。 我想用這個程序從一個語料庫中生成隨機文本..在這種情況下是一本書的一部分。屬性錯誤?計劃即將開始
我有一個文本文件,它是我的文集:(這是前奏,也不會在這裏發表整件事)
The Project Gutenberg EBook of My Man Jeeves, by P. G. Wodehouse
#27 in our series by P. G. Wodehouse
Copyright laws are changing all over the world. Be sure to check the
copyright laws for your country before downloading or redistributing
this or any other Project Gutenberg eBook.
This header should be the first thing seen when viewing this Project
Gutenberg file. Please do not remove it. Do not change or edit the
header without written permission.
Please read the "legal small print," and other information about the
eBook and Project Gutenberg at the bottom of this file. Included is
important information about your specific rights and restrictions in
how the file may be used. You can also find out about how to make a
donation to Project Gutenberg, and how to get involved.
etc etc etc
接下來,我已經我想這個類的使用方法:
import random
class Markov(object):
def __init__(self, open_file):
self.cache = {}
self.open_file = open_file
self.words = self.file_to_words()
self.word_size = len(self.words)
self.database()
def file_to_words(self):
self.open_file.seek(0)
data = self.open_file.read()
words = data.split()
return words
def triples(self):
""" Generates triples from the given data string. So if our string were
"What a lovely day", we'd generate (What, a, lovely) and then
(a, lovely, day).
"""
if len(self.words) < 3:
return
for i in range(len(self.words) - 2):
yield (self.words[i], self.words[i+1], self.words[i+2])
def database(self):
for w1, w2, w3 in self.triples():
key = (w1, w2)
if key in self.cache:
self.cache[key].append(w3)
else:
self.cache[key] = [w3]
def generate_markov_text(self, size=25):
seed = random.randint(0, self.word_size-3)
seed_word, next_word = self.words[seed], self.words[seed+1]
w1, w2 = seed_word, next_word
gen_words = []
for i in xrange(size):
gen_words.append(w1)
w1, w2 = w2, random.choice(self.cache[(w1, w2)])
gen_words.append(w2)
return ' '.join(gen_words)
最後主要是給出了錯誤:「‘馬氏’對象有沒有屬性‘file_to_words’」
import Class
file_ = open('derp.txt')
markov = Class.Markov(file_)
markov.generate_markov_text()
什麼這裏錯了嗎?謝謝。
您file_to_words不縮進,使其成爲馬爾可夫類的一部分。這是一個裸體功能。 – Keith