1
我正在嘗試對DNN迴歸的步驟,learning_rate和batch_size進行網格搜索。我試圖用這個簡單的例子來做到這一點,這裏顯示的波士頓數據集boston example然而,我無法讓它工作。它不會拋出任何錯誤,它只是運行並運行並運行。即使我設置了一個點的網格,它也會這樣做。 您是否在下面看到任何錯誤?我錯過了明顯的東西嗎? 我對sklearn和skflow都很陌生(我知道,skflow已經合併到Tensorflow Learn中,但我認爲這個例子應該是一樣的),但我只是結合了我發現的例子。即使網格只是一個點,帶有skflow/TF的Gridsearchcv也會永久運行
from sklearn import datasets, cross_validation, metrics
from sklearn import preprocessing, grid_search
import skflow
# Load dataset
boston = datasets.load_boston()
X, y = boston.data, boston.target
# Split dataset into train/test
X_train, X_test, y_train, y_test=cross_validation.train_test_split(X, y,test_size=0.2, random_state=42)
# scale data (training set) to 0 mean and unit Std. dev
scaler = preprocessing.StandardScaler()
X_train = scaler.fit_transform(X_train)
regressor = skflow.TensorFlowDNNRegressor(hidden_units=[10, 10],
steps=5000, learning_rate=0.1, batch_size=10)
# use a full grid over all parameters
param_grid = {"steps": [200,400],
"learning_rate": [0.1,0.2],
"batch_size": [10,32]}
# run grid search
gs = grid_search.GridSearchCV(regressor, param_grid=param_grid, scoring = 'accuracy', verbose=10, n_jobs=-1,cv=2)
gs.fit(X_train, y_train)
# summarize the results of the grid search
print(gs.best_score_)
print(gs.best_params_)
感謝您的任何幫助!