我知道python中的異常在try
中很快,但它涉及到catch時可能很昂貴。在python中捕獲性能的例外
這是否意味着:
try:
some code
except MyException:
pass
比這快?
try:
some code
except MyException as e:
pass
我知道python中的異常在try
中很快,但它涉及到catch時可能很昂貴。在python中捕獲性能的例外
這是否意味着:
try:
some code
except MyException:
pass
比這快?
try:
some code
except MyException as e:
pass
除了弗朗西斯的回答,似乎抓的(相對)昂貴的部分之一是例外匹配:
>>> timeit.timeit('try:\n raise KeyError\nexcept KeyError:\n pass', number=1000000)
1.1587663322268327
>>> timeit.timeit('try:\n raise KeyError\nexcept:\n pass', number=1000000)
0.9180641582179874
綜觀(CPython的2)拆卸:
>>> def f():
... try:
... raise KeyError
... except KeyError:
... pass
...
>>> def g():
... try:
... raise KeyError
... except:
... pass
...
>>> dis.dis(f)
2 0 SETUP_EXCEPT 10 (to 13)
3 3 LOAD_GLOBAL 0 (KeyError)
6 RAISE_VARARGS 1
9 POP_BLOCK
10 JUMP_FORWARD 17 (to 30)
4 >> 13 DUP_TOP
14 LOAD_GLOBAL 0 (KeyError)
17 COMPARE_OP 10 (exception match)
20 POP_JUMP_IF_FALSE 29
23 POP_TOP
24 POP_TOP
25 POP_TOP
5 26 JUMP_FORWARD 1 (to 30)
>> 29 END_FINALLY
>> 30 LOAD_CONST 0 (None)
33 RETURN_VALUE
>>> dis.dis(g)
2 0 SETUP_EXCEPT 10 (to 13)
3 3 LOAD_GLOBAL 0 (KeyError)
6 RAISE_VARARGS 1
9 POP_BLOCK
10 JUMP_FORWARD 7 (to 20)
4 >> 13 POP_TOP
14 POP_TOP
15 POP_TOP
5 16 JUMP_FORWARD 1 (to 20)
19 END_FINALLY
>> 20 LOAD_CONST 0 (None)
23 RETURN_VALUE
請注意,catch塊無論如何都會加載異常並將其與KeyError
相匹配。的確,看着except KeyError as ke
情況:
>>> def f2():
... try:
... raise KeyError
... except KeyError as ke:
... pass
...
>>> dis.dis(f2)
2 0 SETUP_EXCEPT 10 (to 13)
3 3 LOAD_GLOBAL 0 (KeyError)
6 RAISE_VARARGS 1
9 POP_BLOCK
10 JUMP_FORWARD 19 (to 32)
4 >> 13 DUP_TOP
14 LOAD_GLOBAL 0 (KeyError)
17 COMPARE_OP 10 (exception match)
20 POP_JUMP_IF_FALSE 31
23 POP_TOP
24 STORE_FAST 0 (ke)
27 POP_TOP
5 28 JUMP_FORWARD 1 (to 32)
>> 31 END_FINALLY
>> 32 LOAD_CONST 0 (None)
35 RETURN_VALUE
唯一的區別是一個STORE_FAST
存儲異常值(在匹配的情況下)。同樣,有幾個例外相匹配:
>>> def f():
... try:
... raise ValueError
... except KeyError:
... pass
... except IOError:
... pass
... except SomeOtherError:
... pass
... except:
... pass
...
>>> dis.dis(f)
2 0 SETUP_EXCEPT 10 (to 13)
3 3 LOAD_GLOBAL 0 (ValueError)
6 RAISE_VARARGS 1
9 POP_BLOCK
10 JUMP_FORWARD 55 (to 68)
4 >> 13 DUP_TOP
14 LOAD_GLOBAL 1 (KeyError)
17 COMPARE_OP 10 (exception match)
20 POP_JUMP_IF_FALSE 29
23 POP_TOP
24 POP_TOP
25 POP_TOP
5 26 JUMP_FORWARD 39 (to 68)
6 >> 29 DUP_TOP
30 LOAD_GLOBAL 2 (IOError)
33 COMPARE_OP 10 (exception match)
36 POP_JUMP_IF_FALSE 45
39 POP_TOP
40 POP_TOP
41 POP_TOP
7 42 JUMP_FORWARD 23 (to 68)
8 >> 45 DUP_TOP
46 LOAD_GLOBAL 3 (SomeOtherError)
49 COMPARE_OP 10 (exception match)
52 POP_JUMP_IF_FALSE 61
55 POP_TOP
56 POP_TOP
57 POP_TOP
9 58 JUMP_FORWARD 7 (to 68)
10 >> 61 POP_TOP
62 POP_TOP
63 POP_TOP
11 64 JUMP_FORWARD 1 (to 68)
67 END_FINALLY
>> 68 LOAD_CONST 0 (None)
71 RETURN_VALUE
將重複異常,並試圖通過一個與之相匹配的對列出的每個例外,直到把它創立一個比賽,這是(可能)是什麼在被暗示爲「差抓住表現「。
我認爲兩者是相同的在速度方面:
>>> timeit.timeit('try:\n raise KeyError\nexcept KeyError:\n pass', number=1000000)
0.7168641227143269
>>> timeit.timeit('try:\n raise KeyError\nexcept KeyError as e:\n pass', number=1000000)
0.7733279216613766
Python程序是由代碼塊構建的。塊是作爲一個單元執行的一段Python程序文本。在Python核心地塊被表示爲結構basicblock:
CPython的/ Python的/ compile.c
typedef struct basicblock_ {
/* Each basicblock in a compilation unit is linked via b_list in the
reverse order that the block are allocated. b_list points to the next
block, not to be confused with b_next, which is next by control flow. */
struct basicblock_ *b_list;
/* number of instructions used */
int b_iused;
/* length of instruction array (b_instr) */
int b_ialloc;
/* pointer to an array of instructions, initially NULL */
struct instr *b_instr;
/* If b_next is non-NULL, it is a pointer to the next
block reached by normal control flow. */
struct basicblock_ *b_next;
/* b_seen is used to perform a DFS of basicblocks. */
unsigned b_seen : 1;
/* b_return is true if a RETURN_VALUE opcode is inserted. */
unsigned b_return : 1;
/* depth of stack upon entry of block, computed by stackdepth() */
int b_startdepth;
/* instruction offset for block, computed by assemble_jump_offsets() */
int b_offset;
} basicblock;
循環,try/except和try/finally語句來處理不同的東西。對於此3個語句用於幀塊:
CPython的/ Python的/ compile.c
enum fblocktype { LOOP, EXCEPT, FINALLY_TRY, FINALLY_END };
struct fblockinfo {
enum fblocktype fb_type;
basicblock *fb_block;
};
A碼塊是在執行幀執行。
CPython的/包含/ frameobject.h
typedef struct _frame {
PyObject_VAR_HEAD
struct _frame *f_back; /* previous frame, or NULL */
PyCodeObject *f_code; /* code segment */
PyObject *f_builtins; /* builtin symbol table (PyDictObject) */
PyObject *f_globals; /* global symbol table (PyDictObject) */
PyObject *f_locals; /* local symbol table (any mapping) */
PyObject **f_valuestack; /* points after the last local */
/* Next free slot in f_valuestack. Frame creation sets to f_valuestack.
Frame evaluation usually NULLs it, but a frame that yields sets it
to the current stack top. */
PyObject **f_stacktop;
PyObject *f_trace; /* Trace function */
/* In a generator, we need to be able to swap between the exception
state inside the generator and the exception state of the calling
frame (which shouldn't be impacted when the generator "yields"
from an except handler).
These three fields exist exactly for that, and are unused for
non-generator frames. See the save_exc_state and swap_exc_state
functions in ceval.c for details of their use. */
PyObject *f_exc_type, *f_exc_value, *f_exc_traceback;
/* Borrowed reference to a generator, or NULL */
PyObject *f_gen;
int f_lasti; /* Last instruction if called */
/* Call PyFrame_GetLineNumber() instead of reading this field
directly. As of 2.3 f_lineno is only valid when tracing is
active (i.e. when f_trace is set). At other times we use
PyCode_Addr2Line to calculate the line from the current
bytecode index. */
int f_lineno; /* Current line number */
int f_iblock; /* index in f_blockstack */
char f_executing; /* whether the frame is still executing */
PyTryBlock f_blockstack[CO_MAXBLOCKS]; /* for try and loop blocks */
PyObject *f_localsplus[1]; /* locals+stack, dynamically sized */
} PyFrameObject;
幀包含一些管理信息(用於調試),並確定在何處以及碼塊執行完成之後執行如何繼續。當你使用'as'語句(在'import something as'或'except exception as'語句中)時,你只需要進行名稱綁定操作。即Python只需在frame對象的* f_locals符號表中添加對象的引用即可。因此在運行時不會有開銷。
但是在解析時你會有一些開銷。
CPython的/模塊/ parsermodule.c
static int
validate_except_clause(node *tree)
{
int nch = NCH(tree);
int res = (validate_ntype(tree, except_clause)
&& ((nch == 1) || (nch == 2) || (nch == 4))
&& validate_name(CHILD(tree, 0), "except"));
if (res && (nch > 1))
res = validate_test(CHILD(tree, 1));
if (res && (nch == 4))
res = (validate_name(CHILD(tree, 2), "as")
&& validate_ntype(CHILD(tree, 3), NAME));
return (res);
}
但是,在我看來,這是可以忽略不計
美中不足的是不貴,出現相對較慢的部分是堆棧跟蹤本身的創建,以及如果需要的話,隨後的堆棧展開。
我知道的所有基於堆棧的語言都允許您捕獲堆棧跟蹤信息,因此需要執行這些操作。
raise
被調用時收集堆棧信息。請注意,Java 1.7允許您抑制堆棧收集,速度更快,但是會丟失大量有用的信息。沒有明智的方法讓語言知道誰會抓住它,所以忽略異常並不會有幫助,因爲無論如何它必須執行大部分工作。與上述兩項操作相比,捕獲量是微乎其微的。這裏有一些代碼來演示隨着堆棧深度的增加,性能下降。
#!/usr/bin/env python
import os
import re
import time
import pytest
max_depth = 10
time_start = [0] * (max_depth + 1)
time_stop = [0] * (max_depth + 1)
time_total = [0] * (max_depth + 1)
depth = []
for x in range(0, max_depth):
depth.append(x)
@pytest.mark.parametrize('i', depth)
def test_stack(benchmark, i):
benchmark.pedantic(catcher2, args=(i,i), rounds=10, iterations=1000)
#@pytest.mark.parametrize('d', depth)
#def test_recursion(benchmark, d):
# benchmark.pedantic(catcher, args=(d,), rounds=50, iterations=50)
def catcher(i, depth):
try:
ping(i, depth)
except Exception:
time_total[depth] += time.clock() - time_start[depth]
def recurse(i, depth):
if(d > 0):
recurse(--i, depth)
thrower(depth)
def catcher2(i, depth):
global time_total
global time_start
try:
ping(i, depth)
except Exception:
time_total[depth] += time.clock() - time_start[depth]
def thrower(depth):
global time_start
time_start[depth] = time.clock()
raise Exception('wtf')
def ping(i, depth):
if(i < 1): thrower(i, depth)
return pong(i, depth)
def pong(i, depth):
if(i < 0): thrower(i,depth)
return ping(i - 4, depth)
if __name__ == "__main__":
rounds = 200000
class_time = 0
class_start = time.clock()
for round in range(0, rounds):
ex = Exception()
class_time = time.clock() - class_start
print("%d ex = Exception()'s %f" % (rounds, class_time))
for depth in range(0, max_depth):
#print("Depth %d" % depth)
for round in range(0, rounds):
catcher(depth, depth)
for rep in range(0, max_depth):
print("depth=%d time=%f" % (rep, time_total[rep]/1000000))
的輸出,時間(時間是相對的)需要在Python中調用Exception()
200000 ex = Exception()'s 0.040469
depth=0 time=0.103843
depth=1 time=0.246050
depth=2 time=0.401459
depth=3 time=0.565742
depth=4 time=0.736362
depth=5 time=0.921993
depth=6 time=1.102257
depth=7 time=1.278089
depth=8 time=1.463500
depth=9 time=1.657082
有人比我更可能是能夠獲得py.test
在最後打印的時間安排。
請注意,幾周前,有人問到有關Java的一個非常類似的問題。這是一個非常豐富的螺紋無論使用何種語言的...
是否「一些代碼」拋出錯誤的問題或不? –
@HannesOvrén它呢 – maazza