0
我有以下錯誤的語句...ValueError異常:錯誤檢查時模型的目標:預計activation_2有形狀(無,761,1),但得到陣列形狀(1,779,1)
ValueError: Error when checking model target: expected activation_2 to have shape (None, 761, 1) but got array with shape (1, 779, 1)
出現錯誤時,我不知道761是什麼意思,我的data1
的形狀是779 * 80
,我的data3
的形狀是779 * 1
。感謝您的幫助!
from __future__ import print_function
from keras.preprocessing.image import ImageDataGenerator
from keras.models import Sequential
from keras.layers import Dense, \
Dropout, \
Activation, \
Flatten
from keras.layers import Convolution1D, \
MaxPooling2D, \
Convolution2D
from keras.utils import np_utils
import scipy.io as sio
import numpy as np
matfn = 'LIVE_data.mat'
data = sio.loadmat(matfn)
data0 = data['data']
data1 = np.ones((1, 779, 80))
data1[0, :, :] = data0
data00 = data['label']
data2 = np.ones((1,779,1))
data2[0, :, :] = data00
data000 = data['ref_ind_live']
data3 = np.ones((1, 779, 1))
data3[0, :, :] = data000
batch_size = 64
nb_classes = 30
nb_epoch = 50
X_train = data1
y_train = data3
X_test = data1[0, :]
y_test = data3[0, :]
X_train = X_train.astype('double')
X_test = X_test.astype('double')
X_train /= 255
X_test /= 255
# Convert class vectors to binary class matrices.
Y_train = np_utils.to_categorical(y_train, nb_classes)
Y_test = np_utils.to_categorical(y_test, nb_classes)
model = Sequential()
model.add(Convolution1D(32, \
10, \
border_mode = 'same', \
input_shape = (779, \
80)))
model.add(Activation('relu'))
model.add(Convolution1D(64, \
10, \
activation='relu'))
model.add(Dropout(0.25))
model.add(Convolution1D(128, \
10, \
activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(1))
model.add(Activation('softmax'))
# Let's train the model using RMSprop
model.compile(loss = 'categorical_crossentropy', \
optimizer = 'rmsprop', \
metrics=['accuracy'])
print("start train")
model.fit(X_train, \
Y_train, \
batch_size = batch_size, \
nb_epoch = nb_epoch, \
shuffle = True)
print("end")
score = model.evaluate(X_test, \
Y_test, \
batch_size = 32)
print('Test score:', \
score[0])
print('Test accuracy:', \
score[1])
我已經修改了你的佈局,使其更容易調試。你的舊佈局是好的,但不一致的應用。另外,你的價值觀,經營者等常常被混淆在一起。這並不是最佳選擇,因爲不分離的元素可能會讓某些人閱讀您的代碼,特別是如果他們不熟悉您的佈局風格或某些使用的技術,有時甚至是他們時。要做到這一點,你應該像我用'data1 = np.ones((1,779,80))'和下面的25行一樣分開它們,或者如我已經完成的其餘代碼一樣。 – toonice
有關如何在Python中執行間距的更多信息,請參閱http://stackoverflow.com/questions/9714161/spaces-in-python-coding-style和http://stackoverflow.com/questions/4172448/is-it - 可能致斷-A-長的線路到多線式-蟒。 – toonice