我試圖使用Rstudio Keras軟件包實現連體網絡。我試圖實現的網絡與this post中的網絡相同。使用Rstudio Keras的連體網絡
所以,基本上,我將代碼移植到R並使用Rstudio Keras實現。到目前爲止,我的代碼如下所示:
library(keras)
inputShape <- c(105, 105, 1)
leftInput <- layer_input(inputShape)
rightInput <- layer_input(inputShape)
model<- keras_model_sequential()
model %>%
layer_conv_2d(filter=64,
kernel_size=c(10,10),
activation = "relu",
input_shape=inputShape,
kernel_initializer = initializer_random_normal(0, 1e-2),
kernel_regularizer = regularizer_l2(2e-4)) %>%
layer_max_pooling_2d() %>%
layer_conv_2d(filter=128,
kernel_size=c(7,7),
activation = "relu",
kernel_initializer = initializer_random_normal(0, 1e-2),
kernel_regularizer = regularizer_l2(2e-4),
bias_initializer = initializer_random_normal(0.5, 1e-2)) %>%
layer_max_pooling_2d() %>%
layer_conv_2d(filter=128,
kernel_size=c(4,4),
activation = "relu",
kernel_initializer = initializer_random_normal(0, 1e-2),
kernel_regularizer = regularizer_l2(2e-4),
bias_initializer = initializer_random_normal(0.5, 1e-2)) %>%
layer_max_pooling_2d() %>%
layer_conv_2d(filter=256,
kernel_size=c(4,4),
activation = "relu",
kernel_initializer = initializer_random_normal(0, 1e-2),
kernel_regularizer = regularizer_l2(2e-4),
bias_initializer = initializer_random_normal(0.5, 1e-2)) %>%
layer_flatten() %>%
layer_dense(4096,
activation = "sigmoid",
kernel_initializer = initializer_random_normal(0, 1e-2),
kernel_regularizer = regularizer_l2(1e-3),
bias_initializer = initializer_random_normal(0.5, 1e-2))
encoded_left <- leftInput %>% model
encoded_right <- rightInput %>% model
但是,在運行的最後兩行的時候,我得到以下錯誤:
Error in py_call_impl(callable, dots$args, dots$keywords) :
AttributeError: 'Model' object has no attribute '_losses'
Detailed traceback:
File "/home/rstudio/.virtualenvs/r-tensorflow/lib/python2.7/site-packages/tensorflow/contrib/keras/python/keras/engine/topology.py", line 432, in __call__
output = super(Layer, self).__call__(inputs, **kwargs)
File "/home/rstudio/.virtualenvs/r-tensorflow/lib/python2.7/site-packages/tensorflow/python/layers/base.py", line 441, in __call__
outputs = self.call(inputs, *args, **kwargs)
File "/home/rstudio/.virtualenvs/r-tensorflow/lib/python2.7/site-packages/tensorflow/contrib/keras/python/keras/models.py", line 560, in call
return self.model.call(inputs, mask)
File "/home/rstudio/.virtualenvs/r-tensorflow/lib/python2.7/site-packages/tensorflow/contrib/keras/python/keras/engine/topology.py", line 1743, in call
output_tensors, _, _ = self.run_internal_graph(inputs, masks)
File "/home/rstudio/.virtualenvs/r-tensorflow/lib/python2.7/site-packages/tensorflow/contrib/keras/python
我一直在尋找類似的實現和問題都在StackOverflow上,但我找不到解決方案。我想我可能會錯過一些非常明顯的東西。
任何想法如何解決這個問題?
這在我的電腦上運行良好。嘗試更新R-keras軟件包和tensorflow安裝。 –
哦,快點。感謝您花時間對其進行測試。雖然我的安裝很新,但我會嘗試更新並查看是否可以運行它:) –
解決!謝謝丹尼爾。如果您可以自己重新發布您的建議作爲答案,那麼我可以將其標記爲解決方案。我還沒有幾個名聲,但我應該能夠做到這一點... :) –