2013-10-31 56 views
-1

得到的結果我在使用WEKA一個新手,所以你能不能解釋一下我下面的結果我從嘗試使用訓練多層感知器(神經網絡)數據有:解釋我從WEKA

也可能你ATLEAST給我一些可以幫助我理解這一點的鏈接?

=== Run information === 

Scheme:weka.classifiers.functions.MultilayerPerceptron -L 0.3 -M 0.2 -N 500 -V 0 -S 0 -E 20 -H a -G -R 
Relation:  Dengue 
Instances: 520 
Attributes: 12 
       MinTemp 
       MaxTemp 
       MeanTemp 
       RelativeHumidity 
       Rainfall 
       Wind 
       LandArea 
       IncomeClass 
       WasteGenerated 
       PopulationDensity 
       HouseNumber 
       Dengue 
Test mode:evaluate on training data 

=== Classifier model (full training set) === 

Linear Node 0 
    Inputs Weights 
    Threshold 1.045699824540429 
    Node 1 -0.7885241220010747 
    Node 2 -0.5679021300029351 
    Node 3 -0.6990681220652758 
    Node 4 -1.7036399417988182 
    Node 5 -1.7986596505677839 
    Node 6 -1.0031026344357001 
Sigmoid Node 1 
    Inputs Weights 
    Threshold -2.7846715622473632 
    Attrib MinTemp -0.3756262925227143 
    Attrib MaxTemp -1.0113362508935868 
    Attrib MeanTemp -0.6867107452689675 
    Attrib RelativeHumidity -1.357278537485863 
    Attrib Rainfall 0.9346189251054217 
    Attrib Wind -2.4697988150023895 
    Attrib LandArea -0.04802972345084459 
    Attrib IncomeClass -0.0023757695994812353 
    Attrib WasteGenerated -0.5219516258114455 
    Attrib PopulationDensity 0.6275856253232837 
    Attrib HouseNumber 0.4794517421072107 
Sigmoid Node 2 
    Inputs Weights 
    Threshold -2.238113558499396 
    Attrib MinTemp 0.6634817443452294 
    Attrib MaxTemp 0.04177526569735764 
    Attrib MeanTemp 0.4213111516398967 
    Attrib RelativeHumidity 0.9477161615423007 
    Attrib Rainfall -0.06941110528380763 
    Attrib Wind 0.1398767209217198 
    Attrib LandArea 0.011908782901326666 
    Attrib IncomeClass -0.03177518077905532 
    Attrib WasteGenerated -2.111275394512881 
    Attrib PopulationDensity -0.002225384228836655 
    Attrib HouseNumber -0.18689477740073276 
Sigmoid Node 3 
    Inputs Weights 
    Threshold -1.5469990007413668 
    Attrib MinTemp -0.538188914566223 
    Attrib MaxTemp 0.2452404814154855 
    Attrib MeanTemp -0.07155897171503904 
    Attrib RelativeHumidity -0.6490463479419373 
    Attrib Rainfall 1.2010399306686497 
    Attrib Wind 0.7275195821368675 
    Attrib LandArea -0.033472141554108756 
    Attrib IncomeClass 0.021303339082304765 
    Attrib WasteGenerated -0.12403826628027773 
    Attrib PopulationDensity -0.2663352902864381 
    Attrib HouseNumber 0.5153046727550502 
Sigmoid Node 4 
    Inputs Weights 
    Threshold -1.3273158445760431 
    Attrib MinTemp -0.511476470658412 
    Attrib MaxTemp -1.4472764735477759 
    Attrib MeanTemp -0.992550007766579 
    Attrib RelativeHumidity -0.4889201348001783 
    Attrib Rainfall 4.777705232733897 
    Attrib Wind 1.0057960261924193 
    Attrib LandArea 0.01594686951090471 
    Attrib IncomeClass -0.012053049723794618 
    Attrib WasteGenerated -0.29397677127551647 
    Attrib PopulationDensity 0.8760275665744505 
    Attrib HouseNumber 0.26513119051179107 
Sigmoid Node 5 
    Inputs Weights 
    Threshold 0.9085281334048771 
    Attrib MinTemp -2.3264253136843633 
    Attrib MaxTemp 4.342385678707546 
    Attrib MeanTemp 1.26274142914379 
    Attrib RelativeHumidity 0.3589371377240767 
    Attrib Rainfall -6.060544069949767 
    Attrib Wind -1.7001357028288409 
    Attrib LandArea -0.04696606932834255 
    Attrib IncomeClass -0.02765457448569584 
    Attrib WasteGenerated -4.685692052378084 
    Attrib PopulationDensity 0.7497806979087069 
    Attrib HouseNumber -1.817884131764966 
Sigmoid Node 6 
    Inputs Weights 
    Threshold -2.343332128576834 
    Attrib MinTemp -1.7808827758329944 
    Attrib MaxTemp 2.3738961064086217 
    Attrib MeanTemp 0.6053466030736496 
    Attrib RelativeHumidity 0.4178221348007889 
    Attrib Rainfall 0.2646387686505043 
    Attrib Wind 0.6941590574632328 
    Attrib LandArea 0.022879267506905346 
    Attrib IncomeClass -0.030599400189594162 
    Attrib WasteGenerated 0.2341906598765536 
    Attrib PopulationDensity -0.054518515830522876 
    Attrib HouseNumber -0.6802930287343757 
Class 
    Input 
    Node 0 


Time taken to build model: 17.83 seconds 

=== Evaluation on training set === 
=== Summary === 

Correlation coefficient     0.7747 
Mean absolute error      1.477 
Root mean squared error     1.9605 
Relative absolute error    110.9364 % 
Root relative squared error    86.4544 % 
Total Number of Instances    518  
Ignored Class Unknown Instances     2  

回答

2

你遇上了數據的多層感知器(MLP)算法。 MLP使用反向傳播來分類實例。我會假設你熟悉基本統計學,反向傳播的概念和人工神經網絡,因爲你選擇了這個特定的算法來訓練你的模型。如果情況並非如此,那麼你已經把車放在了馬匹的前面,並且在使用這個模型之前需要學習數學。 Here is a training presentation that may help you if this is the case.

它說'運行信息'後,它顯示您運行的命令和您設置的所有參數(在Weka documentation中說明 - 您選擇它們​​或至少按默認值運行)。在此之後,它顯示您正在使用登革熱文件(可能與受感染者的發燒和人口統計相關的數據,但是因爲您選擇了這些數據,我會假定您對如何收集數據以及數據是什麼有基本的瞭解)。實例是數據文件中的樣本數量,屬性是列數。

sigmoid節點是backpropogation和相關數據中使用的節點。這是網絡本身(它的權重和屬性)。這個網絡隱藏層中的節點都是S形的,但輸出節點是線性單元(例如,線性節點0是你的輸出單元,而sigmoid節點1-6是你的六個隱藏單元,給出的所有值都是你的互連權重。你可以用它們來手動計算你的結果(這是你在網絡下面完成的)

正如我剛纔所說的,底部是從網絡計算出來的最終結果,這部分是所有基本統計數據,所以我贏了我們再詳述一下。