2016-12-15 53 views
0

我試圖在每個方面(這裏,每個球員)的顏色最大酒吧不同於其他人。相反,我的代碼在所有方面着色了最大條。我怎樣才能解決這個問題?改變每個方面的最大酒吧的顏色

require(dplyr) 
require(ggplot2) 
require(ggthemes) 

    df %>% 
     group_by(Player, Theme) %>% summarise(Likes = mean(fb_Likes)) %>% 
     ggplot(aes(x = Theme, y = Likes), color = "white") + 
     geom_bar(stat = "identity", aes(group = Player, fill = Likes == max(Likes))) + 
     scale_fill_manual(values = c('#888888', '#333333')) + 
     theme_tufte(base_size = 12, 
        base_family = "sans", 
        ticks = TRUE) + 
     coord_flip() + 
     theme(legend.position = "none", panel.background = element_blank()) + 
     facet_grid(Player ~., space = "free") 

這裏的數據:

df <- structure(list(Player = c("Ozil", "Ozil", "Ozil", "Ozil", "Ozil", 
"Ozil", "Ozil", "Ozil", "Ozil", "Ozil", "Ozil", "Ozil", "Ozil", 
"Ozil", "Ozil", "Ozil", "Ozil", "Ozil", "Ozil", "Ozil", "Ozil", 
"Ozil", "Ozil", "Ozil", "Ozil", "Ozil", "Ozil", "Ozil", "Ozil", 
"Ozil", "Ozil", "Ozil", "Ozil", "Ozil", "Ozil", "Ozil", "Ozil", 
"Ozil", "Ozil", "Ozil", "Ozil", "Ozil", "Ozil", "Ozil", "Ozil", 
"Ozil", "Ozil", "Ozil", "Ozil", "Ozil", "Ozil", "Ozil", "Ozil", 
"Ozil", "Ozil", "Ozil", "Ozil", "Ozil", "Ozil", "Ozil", "Ozil", 
"Ozil", "Ozil", "Ozil", "Ozil", "Ozil", "Ozil", "Ozil", "Ozil", 
"Ozil", "Ozil", "Ozil", "Ozil", "Ozil", "Ozil", "Ronaldo", "Ronaldo", 
"Ronaldo", "Ronaldo", "Ronaldo", "Ronaldo", "Ronaldo", "Ronaldo", 
"Ronaldo", "Ronaldo", "Ronaldo", "Ronaldo", "Ronaldo", "Ronaldo", 
"Ronaldo", "Ronaldo", "Ronaldo", "Ronaldo", "Ronaldo", "Ronaldo", 
"Ronaldo", "Ronaldo", "Ronaldo", "Ronaldo", "Ronaldo", "Ronaldo", 
"Ronaldo", "Ronaldo", "Ronaldo", "Ronaldo", "Ronaldo", "Ronaldo", 
"Ronaldo", "Ronaldo", "Ronaldo", "Ronaldo", "Ronaldo", "Ronaldo", 
"Ronaldo", "Ronaldo", "Ronaldo", "Ronaldo", "Ronaldo", "Ronaldo", 
"Ronaldo", "Ronaldo", "Ronaldo", "Ronaldo", "Ronaldo", "Ronaldo", 
"Ronaldo", "Ronaldo", "Ronaldo", "Ronaldo", "Ronaldo", "Ronaldo", 
"Ronaldo", "Ronaldo", "Ronaldo", "Ronaldo", "Ronaldo", "Ronaldo", 
"Ronaldo", "Ronaldo", "Ronaldo", "Ronaldo", "Ronaldo", "Ronaldo", 
"Ronaldo", "Ronaldo", "Ronaldo", "Ronaldo", "Ronaldo", "Ronaldo", 
"Ronaldo", "Neymar", "Neymar", "Neymar", "Neymar", "Neymar", 
"Neymar", "Neymar", "Neymar", "Neymar", "Neymar", "Neymar", "Neymar", 
"Neymar", "Neymar", "Neymar", "Neymar", "Neymar", "Neymar", "Neymar", 
"Neymar", "Neymar", "Neymar", "Neymar", "Neymar", "Neymar", "Neymar", 
"Neymar", "Neymar", "Neymar", "Neymar", "Neymar", "Neymar", "Neymar", 
"Neymar", "Neymar", "Neymar", "Neymar", "Neymar", "Neymar", "Neymar", 
"Neymar", "Neymar", "Neymar", "Neymar", "Neymar", "Neymar", "Neymar", 
"Neymar", "Neymar", "Neymar", "Neymar", "Neymar", "Neymar", "Neymar", 
"Neymar", "Neymar", "Neymar", "Neymar", "Neymar", "Neymar", "Neymar", 
"Neymar", "Neymar", "Neymar", "Neymar", "Neymar", "Neymar", "Neymar", 
"Neymar", "Neymar", "Neymar", "Neymar", "Neymar", "Neymar", "Neymar", 
"Bale", "Bale", "Bale", "Bale", "Bale", "Bale", "Bale", "Bale", 
"Bale", "Bale", "Bale", "Bale", "Bale", "Bale", "Bale", "Bale", 
"Bale", "Bale", "Bale", "Bale", "Bale", "Bale", "Bale", "Bale", 
"Bale", "Bale", "Bale", "Bale", "Bale", "Bale", "Bale", "Bale", 
"Bale", "Bale", "Bale", "Bale", "Bale", "Bale", "Bale", "Bale", 
"Bale", "Bale", "Bale", "Bale", "Bale", "Bale", "Bale", "Bale", 
"Bale", "Bale", "Bale", "Bale", "Bale", "Bale", "Bale", "Bale", 
"Bale", "Bale", "Bale", "Bale", "Bale", "Bale", "Bale", "Bale", 
"Bale", "Bale", "Bale", "Bale", "Bale", "Bale", "Bale", "Bale", 
"Bale", "Bale", "Bale", "Pogba", "Pogba", "Pogba", "Pogba", "Pogba", 
"Pogba", "Pogba", "Pogba", "Pogba", "Pogba", "Pogba", "Pogba", 
"Pogba", "Pogba", "Pogba", "Pogba", "Pogba", "Pogba", "Pogba", 
"Pogba", "Pogba", "Pogba", "Pogba", "Pogba", "Pogba", "Pogba", 
"Pogba", "Pogba", "Pogba", "Pogba", "Pogba", "Pogba", "Pogba", 
"Pogba", "Pogba", "Pogba", "Pogba", "Pogba", "Pogba", "Pogba", 
"Pogba", "Pogba", "Pogba", "Pogba", "Pogba", "Pogba", "Pogba", 
"Pogba", "Pogba", "Pogba", "Pogba", "Pogba", "Pogba", "Pogba", 
"Pogba", "Pogba", "Pogba", "Pogba", "Pogba", "Pogba", "Pogba", 
"Pogba", "Pogba", "Pogba", "Pogba", "Pogba", "Pogba", "Pogba", 
"Pogba", "Pogba", "Pogba", "Pogba", "Pogba", "Pogba", "Pogba", 
"Suarez", "Suarez", "Suarez", "Suarez", "Suarez", "Suarez", "Suarez", 
"Suarez", "Suarez", "Suarez", "Suarez", "Suarez", "Suarez", "Suarez", 
"Suarez", "Suarez", "Suarez", "Suarez", "Suarez", "Suarez", "Suarez", 
"Suarez", "Suarez", "Suarez", "Suarez", "Suarez", "Suarez", "Suarez", 
"Suarez", "Suarez", "Suarez", "Suarez", "Suarez", "Suarez", "Suarez", 
"Suarez", "Suarez", "Suarez", "Suarez", "Suarez", "Suarez", "Suarez", 
"Suarez", "Suarez", "Suarez", "Suarez", "Suarez", "Suarez", "Suarez", 
"Suarez", "Suarez", "Suarez", "Suarez", "Suarez", "Suarez", "Suarez", 
"Suarez", "Suarez", "Suarez", "Suarez", "Suarez", "Suarez", "Suarez", 
"Suarez", "Suarez", "Suarez", "Suarez", "Suarez", "Suarez", "Suarez", 
"Suarez", "Suarez", "Suarez", "Suarez"), Theme = c("02 Personal", 
"05 Onfield Performance", "05 Onfield Performance", "03 Sponsorship", 
"05 Onfield Performance", "09 Off-field Responsibilities", "04 Pop Culture", 
"02 Personal", "05 Onfield Performance", "10 Other Athletes", 
"03 Sponsorship", "05 Onfield Performance", "05 Onfield Performance", 
"09 Off-field Responsibilities", "11 Other", "03 Sponsorship", 
"11 Other", "02 Personal", "05 Onfield Performance", "10 Other Athletes", 
"05 Onfield Performance", "09 Off-field Responsibilities", "11 Other", 
"05 Onfield Performance", "09 Off-field Responsibilities", "07 Politics", 
"03 Sponsorship", "06 Shoutout", "08 Throwback", "09 Off-field Responsibilities", 
"09 Off-field Responsibilities", "11 Other", "05 Onfield Performance", 
"02 Personal", "09 Off-field Responsibilities", "10 Other Athletes", 
"10 Other Athletes", "02 Personal", "05 Onfield Performance", 
"02 Personal", "08 Throwback", "05 Onfield Performance", "10 Other Athletes", 
"10 Other Athletes", "10 Other Athletes", "05 Onfield Performance", 
"11 Other", "11 Other", "09 Off-field Responsibilities", "08 Throwback", 
"11 Other", "02 Personal", "02 Personal", "10 Other Athletes", 
"09 Off-field Responsibilities", "10 Other Athletes", "02 Personal", 
"09 Off-field Responsibilities", "02 Personal", "10 Other Athletes", 
"02 Personal", "02 Personal", "10 Other Athletes", "10 Other Athletes", 
"08 Throwback", "02 Personal", "05 Onfield Performance", "09 Off-field Responsibilities", 
"09 Off-field Responsibilities", "02 Personal", "02 Personal", 
"09 Off-field Responsibilities", "10 Other Athletes", "05 Onfield Performance", 
"09 Off-field Responsibilities", "03 Sponsorship", "03 Sponsorship", 
"02 Personal", "00 Upcoming Season", "03 Sponsorship", "03 Sponsorship", 
"02 Personal", "02 Personal", "02 Personal", "05 Onfield Performance", 
"03 Sponsorship", "02 Personal", "02 Personal", "03 Sponsorship", 
"03 Sponsorship", "03 Sponsorship", "02 Personal", "00 Upcoming Season", 
"00 Upcoming Season", "01 Charities", "02 Personal", "02 Personal", 
"00 Upcoming Season", "00 Upcoming Season", "05 Onfield Performance", 
"03 Sponsorship", "05 Onfield Performance", "05 Onfield Performance", 
"03 Sponsorship", "03 Sponsorship", "02 Personal", "05 Onfield Performance", 
"05 Onfield Performance", "02 Personal", "09 Off-field Responsibilities", 
"01 Charities", "05 Onfield Performance", "05 Onfield Performance", 
"05 Onfield Performance", "03 Sponsorship", "00 Upcoming Season", 
"03 Sponsorship", "00 Upcoming Season", "03 Sponsorship", "03 Sponsorship", 
"02 Personal", "00 Upcoming Season", "03 Sponsorship", "00 Upcoming Season", 
"03 Sponsorship", "00 Upcoming Season", "03 Sponsorship", "00 Upcoming Season", 
"05 Onfield Performance", "05 Onfield Performance", "00 Upcoming Season", 
"02 Personal", "00 Upcoming Season", "00 Upcoming Season", "09 Off-field Responsibilities", 
"05 Onfield Performance", "02 Personal", "03 Sponsorship", "00 Upcoming Season", 
"00 Upcoming Season", "02 Personal", "02 Personal", "05 Onfield Performance", 
"05 Onfield Performance", "00 Upcoming Season", "00 Upcoming Season", 
"00 Upcoming Season", "02 Personal", "05 Onfield Performance", 
"02 Personal", "03 Sponsorship", "03 Sponsorship", "01 Charities", 
"02 Personal", "03 Sponsorship", "02 Personal", "03 Sponsorship", 
"05 Onfield Performance", "05 Onfield Performance", "06 Shoutout", 
"01 Charities", "05 Onfield Performance", "01 Charities", "01 Charities", 
"03 Sponsorship", "09 Off-field Responsibilities", "04 Pop Culture", 
"01 Charities", "01 Charities", "01 Charities", "02 Personal", 
"01 Charities", "03 Sponsorship", "03 Sponsorship", "06 Shoutout", 
"01 Charities", "09 Off-field Responsibilities", "01 Charities", 
"04 Pop Culture", "01 Charities", "01 Charities", "01 Charities", 
"02 Personal", "01 Charities", "03 Sponsorship", "03 Sponsorship", 
"01 Charities", "03 Sponsorship", "05 Onfield Performance", "05 Onfield Performance", 
"07 Politics", "03 Sponsorship", "02 Personal", "01 Charities", 
"03 Sponsorship", "01 Charities", "01 Charities", "03 Sponsorship", 
"01 Charities", "01 Charities", "05 Onfield Performance", "09 Off-field Responsibilities", 
"03 Sponsorship", "01 Charities", "09 Off-field Responsibilities", 
"02 Personal", "01 Charities", "01 Charities", "03 Sponsorship", 
"02 Personal", "01 Charities", "09 Off-field Responsibilities", 
"01 Charities", "02 Personal", "02 Personal", "11 Other", "06 Shoutout", 
"06 Shoutout", "06 Shoutout", "06 Shoutout", "06 Shoutout", "06 Shoutout", 
"06 Shoutout", "06 Shoutout", "09 Off-field Responsibilities", 
"01 Charities", "05 Onfield Performance", "06 Shoutout", "09 Off-field Responsibilities", 
"09 Off-field Responsibilities", "03 Sponsorship", "05 Onfield Performance", 
"09 Off-field Responsibilities", "09 Off-field Responsibilities", 
"06 Shoutout", "02 Personal", "07 Politics", "09 Off-field Responsibilities", 
"05 Onfield Performance", "05 Onfield Performance", "02 Personal", 
"05 Onfield Performance", "07 Politics", "06 Shoutout", "05 Onfield Performance", 
"09 Off-field Responsibilities", "09 Off-field Responsibilities", 
"10 Other Athletes", "05 Onfield Performance", "03 Sponsorship", 
"08 Throwback", "05 Onfield Performance", "02 Personal", "05 Onfield Performance", 
"00 Upcoming Season", "05 Onfield Performance", "03 Sponsorship", 
"03 Sponsorship", "05 Onfield Performance", "03 Sponsorship", 
"09 Off-field Responsibilities", "06 Shoutout", "05 Onfield Performance", 
"00 Upcoming Season", "03 Sponsorship", "03 Sponsorship", "09 Off-field Responsibilities", 
"05 Onfield Performance", "09 Off-field Responsibilities", "10 Other Athletes", 
"02 Personal", "02 Personal", "09 Off-field Responsibilities", 
"03 Sponsorship", "05 Onfield Performance", "09 Off-field Responsibilities", 
"03 Sponsorship", "00 Upcoming Season", "03 Sponsorship", "09 Off-field Responsibilities", 
"05 Onfield Performance", "05 Onfield Performance", "10 Other Athletes", 
"00 Upcoming Season", "02 Personal", "08 Throwback", "00 Upcoming Season", 
"00 Upcoming Season", "02 Personal", "02 Personal", "03 Sponsorship", 
"02 Personal", "02 Personal", "03 Sponsorship", "02 Personal", 
"02 Personal", "02 Personal", "07 Politics", "08 Throwback", 
"03 Sponsorship", "10 Other Athletes", "03 Sponsorship", "05 Onfield Performance", 
"03 Sponsorship", "11 Other", "11 Other", "03 Sponsorship", "03 Sponsorship", 
"02 Personal", "02 Personal", "05 Onfield Performance", "09 Off-field Responsibilities", 
"02 Personal", "09 Off-field Responsibilities", "05 Onfield Performance", 
"08 Throwback", "09 Off-field Responsibilities", "02 Personal", 
"09 Off-field Responsibilities", "11 Other", "02 Personal", "10 Other Athletes", 
"05 Onfield Performance", "02 Personal", "08 Throwback", "05 Onfield Performance", 
"05 Onfield Performance", "09 Off-field Responsibilities", "10 Other Athletes", 
"02 Personal", "11 Other", "05 Onfield Performance", "08 Throwback", 
"11 Other", "09 Off-field Responsibilities", "10 Other Athletes", 
"09 Off-field Responsibilities", "10 Other Athletes", "03 Sponsorship", 
"02 Personal", "09 Off-field Responsibilities", "09 Off-field Responsibilities", 
"05 Onfield Performance", "09 Off-field Responsibilities", "02 Personal", 
"06 Shoutout", "09 Off-field Responsibilities", "02 Personal", 
"09 Off-field Responsibilities", "10 Other Athletes", "10 Other Athletes", 
"09 Off-field Responsibilities", "06 Shoutout", "02 Personal", 
"10 Other Athletes", "10 Other Athletes", "02 Personal", "02 Personal", 
"10 Other Athletes", "09 Off-field Responsibilities", "10 Other Athletes", 
"09 Off-field Responsibilities", "06 Shoutout", "11 Other", "11 Other", 
"06 Shoutout", "06 Shoutout", "06 Shoutout", "06 Shoutout", "06 Shoutout", 
"10 Other Athletes", "04 Pop Culture", "02 Personal", "02 Personal", 
"02 Personal", "05 Onfield Performance", "07 Politics", "02 Personal", 
"10 Other Athletes", "02 Personal", "11 Other", "10 Other Athletes", 
"07 Politics", "09 Off-field Responsibilities", "02 Personal", 
"09 Off-field Responsibilities", "05 Onfield Performance", "02 Personal", 
"05 Onfield Performance", "03 Sponsorship", "02 Personal", "07 Politics", 
"05 Onfield Performance", "07 Politics", "07 Politics", "07 Politics", 
"05 Onfield Performance", "09 Off-field Responsibilities", "02 Personal", 
"11 Other", "03 Sponsorship", "05 Onfield Performance", "05 Onfield Performance", 
"03 Sponsorship", "03 Sponsorship", "07 Politics", "02 Personal", 
"10 Other Athletes", "09 Off-field Responsibilities", "03 Sponsorship", 
"09 Off-field Responsibilities", "09 Off-field Responsibilities", 
"02 Personal", "02 Personal", "07 Politics", "03 Sponsorship", 
"05 Onfield Performance", "09 Off-field Responsibilities", "03 Sponsorship", 
"03 Sponsorship", "09 Off-field Responsibilities", "05 Onfield Performance", 
"05 Onfield Performance", "07 Politics", "05 Onfield Performance", 
"10 Other Athletes", "05 Onfield Performance", "11 Other", "02 Personal", 
"05 Onfield Performance", "03 Sponsorship", "07 Politics", "07 Politics", 
"07 Politics", "07 Politics", "07 Politics", "09 Off-field Responsibilities", 
"10 Other Athletes", "06 Shoutout", "05 Onfield Performance", 
"10 Other Athletes", "10 Other Athletes", "03 Sponsorship", "10 Other Athletes", 
"05 Onfield Performance", "05 Onfield Performance", "02 Personal", 
"05 Onfield Performance", "07 Politics"), fb_Likes = c(147000L, 
162000L, 332000L, 439000L, 319000L, 167000L, 330000L, 298000L, 
278000L, 208000L, 154000L, 185000L, 231000L, 239000L, 488000L, 
155000L, 196000L, 478000L, 216000L, 141000L, 194000L, 202000L, 
274000L, 359000L, 158000L, 595000L, 182000L, 185000L, 80000L, 
135000L, 260000L, 272000L, 164000L, 271000L, 105000L, 158000L, 
204000L, 121000L, 135000L, 178000L, 63000L, 149000L, 119000L, 
147000L, 249000L, 284000L, 180000L, 593000L, 213000L, 225000L, 
241000L, 181000L, 208000L, 203000L, 296000L, 125000L, 435000L, 
328000L, 216000L, 252000L, 226000L, 231000L, 345000L, 307000L, 
338000L, 576000L, 289000L, 212000L, 312000L, 874000L, 386000L, 
96000L, 197000L, 556000L, 97000L, 930000L, 176000L, 1600000L, 
785000L, 579000L, 622000L, 1600000L, 1000000L, 697000L, 661000L, 
189000L, 1400000L, 627000L, 681000L, 985000L, 727000L, 1000000L, 
929000L, 978000L, 847000L, 1300000L, 854000L, 908000L, 1000000L, 
815000L, 148000L, 680000L, 916000L, 517000L, 161000L, 1400000L, 
974000L, 598000L, 1600000L, 798000L, 135000L, 1200000L, 1200000L, 
1400000L, 511000L, 935000L, 425000L, 686000L, 581000L, 716000L, 
1300000L, 828000L, 671000L, 848000L, 545000L, 633000L, 91000L, 
1100000L, 1400000L, 672000L, 1000000L, 1200000L, 736000L, 1000000L, 
683000L, 812000L, 1300000L, 241000L, 999000L, 953000L, 1900000L, 
1300000L, 100000L, 1500000L, 1300000L, 100000L, 706000L, 1500000L, 
1200000L, 2200000L, 138L, 151L, 3500L, 2700L, 12L, 5500L, 206L, 
1300L, 933L, 4000L, 1500L, 625L, 1700L, 2100L, 130L, 3500L, 1300L, 
1600L, 1750L, 3600L, 168L, 980L, 126L, 147L, 1100L, 1500L, 3500L, 
4300L, 1200L, 3700L, 2600L, 760L, 2700L, 2500L, 156L, 130L, 1700L, 
87L, 975L, 1200L, 2300L, 140L, 2300L, 1800L, 98L, 1900L, 2700L, 
1700L, 150L, 2000L, 1200L, 3700L, 156L, 2400L, 3700L, 155L, 1500L, 
2000L, 778L, 981L, 123L, 3700L, 985L, 2100L, 74L, 93L, 120L, 
660L, 177L, 134L, 169L, 1500L, 1300L, 1100L, 1000000L, 173798L, 
184350L, 349668L, 169722L, 370084L, 41196L, 227641L, 139077L, 
170818L, 195434L, 275576L, 23964L, 215125L, 222401L, 238528L, 
186610L, 242546L, 230264L, 160129L, 155294L, 104889L, 363315L, 
62592L, 258133L, 213028L, 42128L, 268633L, 54758L, 271158L, 340032L, 
636786L, 50978L, 324209L, 458008L, 61564L, 263577L, 260373L, 
255664L, 90504L, 79281L, 86542L, 247029L, 247392L, 273509L, 678358L, 
498855L, 219236L, 440383L, 58323L, 441537L, 222854L, 106647L, 
169164L, 74627L, 243347L, 576549L, 691629L, 564120L, 161433L, 
347161L, 243750L, 239125L, 177537L, 100315L, 449977L, 33364L, 
539864L, 147940L, 63055L, 162502L, 47826L, 455215L, 178912L, 
347571L, 110622L, 60700L, 13000L, 78400L, 15400L, 124000L, 68100L, 
36700L, 61400L, 34800L, 38900L, 86900L, 24200L, 16000L, 53900L, 
51600L, 58300L, 32700L, 40600L, 47600L, 200000L, 29900L, 71300L, 
102000L, 27000L, 26800L, 31800L, 81400L, 15200L, 38200L, 325000L, 
133000L, 121000L, 35300L, 93400L, 46100L, 60000L, 50600L, 34000L, 
94000L, 48000L, 98000L, 206000L, 47000L, 29000L, 18000L, 42000L, 
162000L, 49000L, 51000L, 31000L, 37000L, 161000L, 83000L, 29000L, 
105000L, 48000L, 27000L, 57000L, 48000L, 21000L, 57000L, 86000L, 
112000L, 126000L, 309000L, 65000L, 48000L, 76000L, 22000L, 59000L, 
23000L, 123000L, 55000L, 72000L, 51000L, 202525L, 29241L, 303359L, 
283098L, 395091L, 63690L, 553574L, 103153L, 129810L, 291100L, 
283324L, 75878L, 93428L, 55684L, 86660L, 342016L, 15746L, 199480L, 
11612L, 11336L, 17126L, 99117L, 140578L, 255422L, 8020L, 101428L, 
406858L, 82288L, 87831L, 48572L, 61207L, 446103L, 172178L, 153797L, 
23919L, 603707L, 158060L, 458647L, 405635L, 23537L, 146939L, 
177193L, 190605L, 10845L, 12847L, 303696L, 183960L, 608762L, 
57376L, 621922L, 285299L, 257097L, 114347L, 294125L, 157214L, 
52844L, 130187L, 10213L, 415479L, 126313L, 90319L, 87047L, 78808L, 
348451L, 272894L, 236654L, 325456L, 198106L, 459927L, 164522L, 
279294L, 340502L, 164667L, 125458L)), class = "data.frame", row.names = c(NA, 
-449L), .Names = c("Player", "Theme", "fb_Likes")) 

回答

4

試試這個:

df %>% 
    group_by(Player, Theme) %>% summarise(Likes = mean(fb_Likes)) %>% 
    ungroup() %>% #Change made here 
    group_by(Player) %>% #and here 
    mutate(ismax = ifelse(Likes == max(Likes), "Max", "NotMax")) %>% #and here 
    ggplot(aes(x = Theme, y = Likes), color = "white") + 
    geom_bar(stat = "identity", aes(group = Player, fill = ismax)) + #and here 
    scale_fill_manual(values = c('#888888', '#333333')) + 
    theme_tufte(base_size = 12, 
       base_family = "sans", 
       ticks = TRUE) + 
    coord_flip() + 
    theme(legend.position = "none", panel.background = element_blank()) + 
    facet_grid(Player ~., space = "free") 

enter image description here

我添加一列,ismax,該數據找到Theme這最大爲每個Player。然後你在那個專欄上做你的fill審美。在撥打ggplot的電話中完成所有這些操作可能是可能的,但我在通話之前完成了此操作。

相關問題